

FIRST YEAR EXAMINATION FOR BACHELOR OF SCIENCE INDUSTRIAL CHEMISTRY

## CHIN 101: QUANTITAVE ANALYSIS

STREAMS: BSc
TIME: 2 HOURS

DAY/DATE: THURSDAY 01/04/2021
8.30 A.M. - 10.30 A.M.

INSTRUCTIONS

- Answer question one and any two questions
- Do not write on the question paper

Question one ( $\mathbf{3 0}$ marks) compulsory question

1. a) (i) Distinguish between symmetric equivalence point and asymmetric equivalence point.
(1 mark)
(ii) Discuss three types of indicators used in redox titration.
( $61 / 2$ marks)
(iii) Calculate the potential of the solution when 15 ml of $0.2 \mathrm{M} \mathrm{Fe}^{3+}$ solution is added to 10 ml of 0.1 m of $\mathrm{Sn}^{2+}$ solution.
$\mathrm{Sn}^{4+}+2 \mathrm{e}^{-} \longleftrightarrow \mathrm{Sn}^{2+} \quad \mathrm{E}_{\mathrm{v}}^{\mathrm{O}}=0.15 \mathrm{~V}$
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \quad \longleftrightarrow \mathrm{Fe} 2+\quad \mathrm{E}_{\mathrm{v}}{ }^{\mathrm{O}}=0.77 \mathrm{~V}$
(iv) Explain whether the redox indicator given below is suitable in the titration of an oxidant analyte with a reductant titrant which has an equivalent point potential of 0.32 V $\mathrm{In}_{\mathrm{ox}}+2 \mathrm{e} \longrightarrow$ InRed EIn $=0.4 \mathrm{~V}$
b) (i) Explain what you understand by the term back titration.
(ii) A 0.2 g of Pyrolusite is analyzed for manganese content as follows:

Add 50.0 ml of a 0.1 m solution of ferrous ammonium sulphate to reduce the $\mathrm{MnO}_{2}$ to $\mathrm{Mn}^{2+}$ After reduction is complete, the excess ferrous ion is titrated in acid solution with $0.02 \mathrm{MKMnO}_{4}$, requiring 15.0 ML . Calculate the percentage of manganese in the sample as $\mathrm{Mn} 3 \mathrm{O}_{4} .\{\mathrm{Mn}=54.938, \mathrm{O}=15.999\}$
(5 marks)
(iii) 800 mg of a sample containing Chromium Ore $\left(\mathrm{Cr}_{2} \mathrm{O}_{3}\right)$ was dissolved in a conical flack and Cr was converted to $\mathrm{CrO} 4^{2-}$ using $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .10 \mathrm{ml}$ of 0.2 M of $\mathrm{Ag}+$ solution was added to the flask and the following reaction took place.
$\mathrm{CrO} 4^{2-}+2 \mathrm{Ag}^{+} \longrightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}$
After separating the $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ precipitate, the excess $\mathrm{Ag}^{+}$in the filtrate was titrated with 0.12 m of SCN - solution according to the following equation.
$\mathrm{Ag}^{+}+\mathrm{SCN}^{-} \longrightarrow \mathrm{AgSCN}$
If the volume of $\mathrm{SCN}^{-}$solution was 14.5 ml , calculate the $\% \mathrm{w} / \mathrm{w}$ of $\mathrm{Cr}_{2} \mathrm{O}_{3}\{\mathrm{Cr}=51.9961 \mathrm{O}$ $=15.999$ )

C (i) List five conditions for the selection of adsorption indicators
(21/2 marks)
(ii) A sample containing the amino acid alanine $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$, plus inert matter is analyzed by the KJeldahl method. A 2.0 g sample is digested, the $\mathrm{NH}_{3}$ is distilled and collected in 50.0 ml of $0.150 \mathrm{~m} \mathrm{H}_{2} \mathrm{SO}_{4}$ and a volume of 9.0 ml of 0.1 m NaOH is required for back-titration. Calculate the percent alanine in the sample.

## QUESTION TWO (20 MARKS)

2. a) (i) Describe the principle of the Eriochome Black $T$ used in complexometric titration. marks)
(ii) State five applications of complexometric titrations.
(iii) Write short notes on the use of masking and selective demasking agents in complexometric titration
b) (i) A solution containing 25.0 ml of $\mathrm{Ni}^{2+}$ in dilute HCl was treated with 25.0 ml of $0.05283 \mathrm{M} \mathrm{Na}_{2}$ EDTA. The solution was neutralized with NaOH and the pH was adjusted to 5.5 with acetate buffer. The solution turned yellow when a few drops of Xylenol Orange indicator were added. It was then titrated with 17.61 ml of $0.002299 \mathrm{M} \mathrm{Zn}^{2+}$ to reach the end point. Determine the molarity of $\mathrm{Ni}^{2+}$ in the unknown. (2 marks) (ii) Calculate the silver ion concentration in terms of PAg during the titration of 50.0 ml of 0.05 M NaCl with $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ after the addition of the following volumes of the reagent.
I. In the preequivalent point region at 10.0 ml
II. at the equivalent point $(25.0 \mathrm{ml})$
III. After the equivalent point at 26.0 ml . For $\mathrm{AgCl}, \mathrm{KSP}=1.82 \times 10^{-10}\left(1 \frac{1}{2}\right.$ marks $)$

## QUESTION THREE (20 MARKS)

3. a) The determination of water hardness of certain borehole water at Chuka town was carried out by year one students. The volume of water sample requiring less than 15 ml of titrant which was able to keep the analysis time under 5 minutes was taken and dilutated to 50 ml with distilled water. The pH of water sample was adjusted using $1-2 \mathrm{ml}$ of pH buffer containing a small amount of $\mathrm{mg}^{2+}$ - EDTA. This was followed by adding 1-2 drops of indicator and titrated with a standard solution of EDTA until the red-t-blue end point was reached.
(i) Why was the sample buffered to a pH of 10 ? and what problems might be expected at a higher pH ?
(ii) Why was a small amount of the Mg2+-EDTA complex added to the buffer?
$1 / 2$ marks)
(iii) Explain why the procedure had to specify that the titration should not take longer than five minutes.
marks)
b) The concentration of a solution of EDTA was determined by standardizing against a solution of $\mathrm{Ca}^{2+}$ prepared using a primary standard of $\mathrm{CaCO}_{3}$. A 0.4071 g sample of $\mathrm{CaCO}_{3}$ was transferred to a 500 ml volumetric flask, dissolved using a minimum of 6 m HCl and diluted to volume. After transferring 50.00 ml portion of this solution to a 250 ml Erlenmeyer flask, the pH was adjusted by adding 5 ml of a $\mathrm{pH} 10 \mathrm{NH}_{3}-\mathrm{NH}_{4} \mathrm{Cl}$ buffer containing a small amount of $\mathrm{Mg} 2^{+}$-EDTA. After adding calmagite as an indicator, the solution was titrated with the EDTA, requiring 42.63 ml to reach the end point. Determine the molar concentration of EDTA in the titrant.
C) An alloy of chromel containing $\mathrm{Ni}, \mathrm{Fe}$ and Cr was analyzed by a complexation titration using EDTA as the titrant. A 0.7176 g sample of the alloy was dissolved in HNO 3 and diluted to a 250 ml in a volumetric flask. A 50 ml a liquot of the sample, treated with PyroPhospahte to mask the Fe and Cr , required 26.4 ml of 0.05831 M EDTA to reach the murexide end point. A second 50.0 ml a liquot was treated with hexamethylenetetramine to mask the Cr . Titrating with 0.0583 M EDITA required 35.43 ml to reach the murexide end point. Finally, a third 50.0 ml of 0.05831 M EDITA, and back titrated to the Murexide end point with 6.21 ml of $0.06316 \mathrm{M} \mathrm{Cu}^{2+}$. Report the weight percent of $\mathrm{NI}, \mathrm{Fe}$ and Cr in the alloy. [58.6134, $\mathrm{Cu}=63.546, \mathrm{Cr}=519961, \mathrm{Fe}=$ 55.845]
d) Discuss with help of a suitable diagram the titration curve of $\mathrm{Na}_{2} \mathrm{Co}_{3}$ versus Hcl showing the pH range of phenolphthalein, methyl red and methyl orange indicators.

1/2marks)

## QUESTION FOUR (20 MARKS)

4. a) (i) write short notes on various types of gravimetric analysis.
(2 marks)
(ii) Suggest ways of overcoming many of the possible problems associated with gravimetric analysis.
(iii) The procedure given below was used by a group of students in order to determine magnesium in water and waste water.

Transfer a sample that contains no more than 60 mg of $\mathrm{Mg}^{2+}$ into a 600 ml . Add 2-3 drops of Methyl red indicator, and if necessary, adjust the volume to 150 ml . Acidify the solution with 6 M Hcl and add 10 ml of $30 \%$ w/v $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$. After cooling and with constant stirring add concentrated NH3 drop wise until the methyl red indicator turned yellow ( $\mathrm{pH}>6.3$ ). After stirring for 5 min , add 5 ml of concentrated $\mathrm{NH}_{3}$ and continue to stir for an additional 10 min . Allow the resulting solution and precipitate to stand overnight. Isolate the precipitate by filtering through filter paper, rinsing with $5 \% \mathrm{v} / \mathrm{v}$ $\mathrm{NH}_{3}$. Dissolve the precipitate in 50 ml of $10 \% \mathrm{v} / \mathrm{v} \mathrm{HCl}$ and precipitate a second time following the same procedure. After filtering, carefully remove the filter paper by charring. Heat the precipitate at $500^{\circ} \mathrm{C}$ until the residue is white and then bring the precipitate to constant weight at $1100^{\circ} \mathrm{C}$.
I. Why does the procedure call for a sample that contains no more than 60 mg of $\mathrm{Mg}^{2+}$ ?
(1 $1 / 2$ marks)
II. Why is the solution acidified with HCl before adding the precipitant? ( $1 \frac{1}{2}$ marks)
III. Why is the acid base indicator Methyl red added to the solution? ( $2 \frac{1}{2}$ marks)
IV. Explain why forming $\mathrm{Mg}\left(\mathrm{PO}_{3}\right)_{2}$ instead of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ increases the precipitates mass?
(1⁄2marks)
V. Why is the precipitate rinsed with a solution of $5 \% \mathrm{v} / \mathrm{v} \mathrm{NH}_{3}$ ?
VI. What steps help to improve the precipitates purity?
b) 6.4 g of a pure monobasic organic acid is burnt completely in excess of oxygen and $\mathrm{CO}_{2}$ evolved absorbed completely in one litre of an aqueous solution of NAOH. A 10 ml portion of this solution required 14.5 ml of a normal HCl solution to reach the phenolphthalein end point. Another 10 ml portion of the same solution required 18 ml of the same HCl solution to reach the Methyl Orange end point if the organic acid contains $25 \%$ oxygen by weight, deduce the empirical formula of this acid and strength of original $\mathrm{NaOH}[\mathrm{Na}=22.989, \mathrm{O}=15.9994, \mathrm{H}=$ $1.0079, \mathrm{C}=12.011 \mathrm{~g}]$

