CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY

CHEM 437: ORGANIC SPECTROSCOPY

STREAMS:

TIME: 2 HOURS

DAY/DATE : WEDNESDAY 22 /09/ 2021

8.30 AM - 10.30 AM

INSTRUCTIONS TO CANDIDATES:

- Answer Question One and any other Two Questions.
- DO NOT WRITE ANYTHING on the question paper.

QUESTION ONE (30 MARKS)

1. a) Calculate the wavelength of the absorption maximum of the following compounds

CHEM 437

- b. (i) Assign the structure shown to the respective isomer on the basis of this
- information; the α Isomer shows a peak at 228 nm ($\in =14,000$) while the Isomer has a band at 296 nm ($\in =11,000$).

[5 Marks]

(ii) Justify the following stateme

The compound		(structure 1) will absorb at longer wavelength compared	
to		(structure II)	$[1^{1}/_{2}$ Marks]
c. (i)	The molar absorptivity of the B1 (III) thiorea complex is 9.3×10^3 L cm -1 mol ⁻¹ at 470nm. What concentration of this complex would be needed to produce a solution with		
	a transmittance of 6.85% wh	en measured in a 1.0 cm cell at this wavelen	gth.[½ Mark]
(ii)	Determine the following freq	uency in hertz	
(I)	The calcium emission line at	422.7nm	$[1^{1}/_{2} \text{ Marks}]$
(II)	An infrared absorption peak a	at 3.00 <i>HM</i>	[1 Mark]
(III)	The line in the x-ray emission	n spectrum of potassium at 3.742 A ⁰	[1 Mark]
(IV)	The microwave beam with a	wavelength of 250 cm.	[¹ / ₂ Mark]

 $[1m = 10^{6}HM = 10^{9}nm = 10^{2}cm = 10^{10}A^{0}$ $h = 6.62608 \times 10^{-34} \text{ JS}, C = 3.0 \times 10^{8} \text{ m/s}$

(d) A 2.83 x 10-4 M solution of potassium permanganate has a molar absorbance of 0.510 when measurement in 1.00 cm cell at 520 nm. Calculate

(i) The molar absorptivity for kmn0₄ at this wavelength $[1/_2 \text{ Mark}]$ The absorptivity when the concentration is expressed in PPM (k=39.098, Mn = 54.938, 0 (ii) =15.999 $[1^{1}/_{2} Mark]$ The concentration of permanganate in a solution that has an absorbance of 0.697 when (iii) measured in 1.5 cm cell at 520nm. $[1/_2 Mark]$ (iv) The transmittance of the solution in (d (iii)) [1 Mark] (v) The absorbance of a solution that has twice the transmittance of the solution in (d(iii) [1 Mark] **QUESTION TWO (20 MARKS)** 2a. (i) Describe the principle of Mclafferty Rearrangements using suitable examples. [4 Marks] Outline the mode of fragmentation during mass spectrometric study of the (ii) following compounds leading to the peaks at indicated m/z **(I)** Methylbut anoate at m/e 74 and 79. [1 Mark] Benzyl methyl ether at m/e 91 and 65 [2 Marks] (II)

(iii) How will you distinguish 3-methylcyclonexene and 4-methyl-cyclonexene and 4methyl-cyclonexene using mass spectroscopy. [1

Mark]

(iv) An organic compound gave a peak at m/z 122 (w) and another peak of nearly equal intensity at m/z 124 in its mass spectrum. What is the likely molecular formula of the compound?

 $[2^{1}/_{2} \text{ Marks}]$

CHEM 437

- b (i) In the mass spectrum of an unsaturated hydrocarbon, the molecular ion peak has relative intensity 70.0, the m+1 peak 4.7 and the base peak a relative intensity of 100. How many carbon atoms are there in the hydrocarbon per molecule. [1 Mark]
- (ii) State various types of ions produced in a mass spectrometer. $[2^{1}/_{2} \text{ Marks}]$
- (iii) An unknown substance has a molecular ion peak at m/z = 107, with a relative intensity of 100. The relative intensity of the M+1 Peak is 8.00 and the relative intensity of the m+2 peak is 0.30. What is the molecular formula for this unknown. [3 Marks]
- (iv) The mass spectral data of an unknown liquid are given below. What is the molecular formula of this unknown?

m/z	intensity
78	23.6 (m ^r)
79	0.79
80	7.55
81	0.25

[3 Marks]

QUESTION THEEE (20 MARKS)

3.	a)	Discuss real deviation from lambert – Beer's law.	[5 Marks]	
	b)	b) Write short notes on the following in relation to sample handling techniques in infrared spectroscopy.		
	i)	Vapour Phase	[1 ¹ / ₂ Marks]	
	ii)	Liquid film	[1 Mark]	
	iii)	Solution	[4 ¹ / ₂ Mark]	

c. (i) Why does hydrogen bonding lower the absorption frequency.[4 Marks]

(ii) Distinguish between Inter and intra molecular hydrogen bondings.

[4 Marks]

CHEM 437

QUESTION FOUR (20 MARKS)

4a.	(i)	Assign the bands of the IR Spectrum given fig 1	[21/2 Marks]
	(ii)	Consider the reaction between 1, 4- dinitro -1, 3- cyc	
		give a product compare the spectra of the initiation of the initia	ar compound and product in
fig 2			

	(iii)	Assign the fundamental bands of the IR spectrum given in Fig.3	$[2^{1}/_{2} \text{ Marks}]$	
ground	(iv)	Compare the spectra shown in Fig.4 to Fig.6 and make a qualitative evaluation of the effect of substituents at the α –positions with respect to the –No2 the positions of the absorption bands of the nitro group and of the		
double			oup and or and	
$[6^{1}/_{2} \text{ Marks}]$				
1	b.	The IR Spectrum of CO shows a vibrational absorption band cente	red at 2170cm-	
	(i)	What is the force constant for the CO band?	$[2^{1}/_{2} Marks]$	
	(ii)	At what wave number would the corresponding peak for ¹⁴ CO occur		
		C=12, 0 =16, Na = 6.02214×10^{23}		
		Mol-1, C=2.99792558 x10 ⁸ m/s	[2 Marks]	

Explain the parameters given below in relation to high resolution NMR spectra. c.

	(i)	Chemical shifts	[¹ / ₂ Mark]
	(ii)	Spin-spin coupling constants	$[1^{1/2}$ Marks]
	(iii)	Integrated intensities	[¹ / ₂ Mark]
	(iv)	Line widths and shifts as function of parameters like temperature of concentrations.	or [1
п.			

Mark]