CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

CHEM 417: RADIATION AND NUCLEAR CHEMISTRY

STREAMS: BSC

TIME: 2 HOURS

 $[4\frac{1}{2} \text{ marks}]$

DAY/DATE: FRIDAY 26/03/2021

8.30 A.M – 10.30 A.M.

INSTRUCTIONS: Answer question ONE and any other TWO questions

QUESTION ONE (30 MARKS)

(a) (i) Compare the properties of Alpha Rays, Beta Rays and Gamma Rays [6 marks] (ii) ${}^{210}_{82}Pb$ is a β -emitter and ${}^{226}_{88}Ra$ is an \propto -emitter. What will be the atomic masses and atomic numbers of daughter elements of these radioactive elements? Predict the position of daughter elements in the periodic table. [2 marks]

(iii) Explain how ionization chamber can be used to detect and measure the radioactive radiation [3 marks]

(b) (i) Write short notes on Radioactive series

(ii) Explain using suitable examples why radioactive half-life is important [3 marks]

(iii) Suppose you analyzed mineral sample and found that it contained 33,278 parent atoms and 14,382 daughter atoms. Further, suppose that the half-life of the parent atom is 2.7 million years. How old is the mineral samples? $[\lambda=0.5]$

[3 marks]

(c)	(i)	Discu	ss the radioactive equilibrium	$[2\frac{1}{2} \text{ marks}]$			
	(ii)	$^{60}_{27}Co~{ m d}$	$^{60}_{27}Co$ decays with a half-life of 5.27 years to produce $^{60}_{28}$				
		(I)	(I) Calculate the decay constant for the radioactive disintegration of $cobalt - 60$				
			$[\frac{1}{2} \text{ mark}]$				
(II) Calculate the fraction of a sample of the ${}^{60}_{27}Co$ isotope that will ren				sotope that will remain after 15			
			years	[½ mark]			
(III) How			How long does it take for sample of $^{60}_{27}Co$ to di	long does it take for sample of ${}^{60}_{27}Co$ to disintegrate to the extent that only			
			2.0% of the original amount remains?	[1 mark]			
(iii) An igneous rock contains $9.58 \times 10^{-5} g$ of $u - 238$ and $2.51 \times 10^{-5} g$ of							
	Pb-2	206, and	d much, smaller amount of $Pb-208$. The $u-238$	B decays into			
$Pb-206$ with a half-life of $4.5 \times 10^9 y$ [3 marks]			[3 marks]				
(d)	(i)	i) State three advantages of accelerator mass spectrometer over liquid scintillation					
	counte	er		[2 marks]			
	(ii)	Expla	in why there is a need to measure $\sigma^{13}C$	$[1\frac{1}{2} \text{ marks}]$			
(iii) State one limitation of radiocarbon dating			[½ marks]				

QUESTION TWO (20 MARKS)

(a)	(i)	Give six differences between nuclear fusion and nuclear fission	[6 marks]		
(ii) Discuss the stability of nucleus in terms of neutron-proton ratio and					
	energy	[6 m	arks]		
(b)	(i)	Outline the seven principal advantages and five drawbacks of semicondu			
		[6 m	arks]		
	(ii)	Calculate the binding energy per nucleon in KJ/Mole for an alpha pa	rticle whose		
	mass defect is calculated as 0.029 Z amu				

 $1 amu = 1.6606 \times 10^{27} kg$, $C = 2.9979 \times 10^8 m/s$ [2 marks]

QUESTION THREE (20 MARKS)

Discuss the principles of the two quantitative radiochemical methods of analysis listed (a) below (i) Neutron activation analysis [7 marks] (ii) Isotope dilution analysis [3 marks] (b) (i) The concentration of Mn in steel can be determined by a neutron activation analysis using the method of external standards. A 1.00g sample of an unknown steel sample and a 0.95 g sample of standard steel known to contain 0.463% W/W Mn are irradiated with neutrons in a nuclear reaction for 10h. After a 40 min delay the gamma ray emission is 2542 cPM (counts per minute) for the unknown and 1984 cPM for the external the unknown standard. Calculate the % W/W Mn in

[2 marks]

(ii) The concentration of insulin in a production vat is determined by isotope

dilution. A 1.00 mg sample of insulin labeled with 14_c having an activity of 549 cPM is added to a 10.0ml sample taken from the production vat. After homogenizing the sample, a portion of the insulin is separated and purified yielding 18.3 mg of pure insulin. The activity for the isolated insulin is measured at 148 cPM . Calculate the mg of insulin in the original sample.

[1 mark]

(c) (i) Outline the eight stringent requirements set against radiation detectors for nuclear instrument
 [4 marks]

(ii) What is the significance of magic number of protons or neutrons? What is the relationship between the number of stable isotopes of an element and whether the element has a magic number of protons? [1 mark]

(iii) Potassium has three common isotopes 39_K , 40_K and 41_K , but only potassium – 40 S radioactive (a beta emitter), suggest a reason for the instability of 40_K

[1 mark]

(iv) What is the most common decay process for elements in row 5 of the period table that contain too few neutrons for the number of protons present? Why?

[1 mark]

QUESTION FOUR (20 MARKS)

(a)	Discuss the uses of radiation under the following headings								
	(i)	Medical uses	[4 marks]						
	(ii)	Academic and scientific applications	[3 marks]						
	(iii)	Industrial uses	[4 marks]						
(b)	Explain the difference between ionizing and nonionizing radiation and their effects on								
			[4 marks]						
(c)	Write	short notes on storage and disposal of radioactive waste	[2 marks]						
(d)	The activity of a 10.00 ml sample of water containing ${}^{90}_{38}Sr$ is 9.07 x 10 ⁶ disintegration s								
Calcul	ate the	molar concentration of ${}^{90}_{38}Sr$ in the sample. The half-life for	$^{90}_{38}Sr$ is 28.1 yrs						
$(N_A = 0)$	5.022 <i>x</i>	narks]							