CHUKA

UNIVERSITY

[2marks]

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

CHEM 416: ORGANOMETALLIC CHEMISTRY		
STREAMS:	TIME: 2 HOURS 11.30 A.M – 11.30 A.M	
DAY/DATE: MONDAY 20/09/2021		
INSTRUCTIONS		
Question ONE and any other TWO questions		
QUESTION ONE [30MARKS]		
(a).(i).Explain briefly what is organometallic chemistry	[2marks]	
(ii) Discuss briefly the importance of studying organometallic		
chemistry as a sub discipline of chemical sciences.	[2marks]	
(b). Explain by giving examples the basis on which organometallic cor	npounds	
may conveniently be classified	[3marks]	
(c). (i). State the 18 electron rule as applied to organotransition compou	nds	

(ii). Determine the valence electron counts for the following complexes and show the ones that obey the 18 electron rule [9marks] **CHEM 416**

(d) For the following complexes, determine the total valence electrons(TVE), the total number of M-M bonds in the complex and the number of M-M bonds each metal makes with the other metal. Also draw the most appropriate structure in each case. [12marks]

i.
$$Fe_3(CO)_{12}$$

iii $Co_4(CO)_4$
iii $[(\eta^5-C_pMo(CO)_2]_2$
iv $(\eta^4-C_4H_4)_2Fe_2(CO)_3$

QUESTION TWO [20MARKS]

in organometallic chemistry:

(i). μ -CO, (ii). μ_4 -PR, (iii) η^5 -C₅H₅, (iv) η^4 -C₆H₆, (v) μ_3 -H.

(b) Why can Cp and CO ligands be regarded as being versatile in their bonding

```
modes while PPh<sub>3</sub> is not.
```

(c). For each of the following pairs of organometallic compounds, identify the species that has a greater thermal stability and justify your choice .[4marks]

- (i). CH₃Mn(CO)₅ versus CF₃Mn(CO)₅
- (ii) $[Co(CO)_4]^-$ versus $[Cu(CO)_4]^-$

(d). On the basis of the 18-e rule identify the first -row transition metal for each of the following .

[4.5marks]

[5marks]

[2marks]

(i). [M(CO) ₇] ⁺	(ii)[M(CO) ₃ PPh ₃] ⁻	(iii) $[\eta^5-C_5H_5M(CO)_3]_2$ [Compound has 1	М-
M bond]			

(e).On the basis of the 18-e rule, determine the expected charge on the following organometallic complexes. [4.5marks]

(i). [$Co(CO)_3$]^z (ii) [Ni(CO)_3(NO)]^z (assume linear NO) (iii). [$(\eta^5 C_5 H_5)Fe(CO)_3$]^z

QUESTION THREE [20 MARKS]

(a)(i). Draw the molecular energy level diagram for carbon monoxide (CO)[sl	how
clearly the HOMO and LUMO and their characteristics]	[3marks]
(ii) Explain precisely what is meant by the term π - acid ligands and discuss	
how they stabilize transition metals in low oxidation state	[2 marks]
(iii) Give two examples of π - acid ligands	[2marks]
b) (i) What is synergic effect? Using a clear orbitals interaction diagram expl	ain
how synergic bonding in metal carbonyls occur.	[2.5marks]
(ii) What is the difference between synergic bonding in transition metal	
carbonyls and synergic bonding in transition metal alkene compounds?	[1.5marks]
c).(i) Explain how you can distinguish experimentally between a terminally	
bonded CO and a bridged (CO) in metal carbonyls	[2marks]
(ii). The stretching frequencies of Carbon monoxide in $Ni(CO)_4$, $Co(CO)_4$ a	nd
$Fe(CO)_4$] - compounds are in order, 2128, 1918 and 1788 cm ⁻¹	
respectively. Discuss this observation	[3marks]
(d). Select the best choice in each of the following complexes and briefly just your choice	tify the reasons for
(i) Complex with the shortest C-O bond $Ni(CO)_{4} [Co(CO)_{4}]^{-}$, $[Fe(CO)_{4}]^{2-}$	[2marks]
(ii) Complex with the lowest C-O stretching frequency $Cr(CO)_6$, $[V(CO)_6]^-$,	[Fe(CO) ₄] ²⁻ [2marks]

QUESTION FOUR [20 MARKS]

(a).(i). Although not an organic ligand, the nitrosyl(NO) ligand has similarities to
CO. Discuss in details similarities and differences between these twos
ligands in their bonding modes. [3marks]

(ii). The cyanide ion (CN ⁻) as a ligand is isoelectronic with CO and as such	
exhibits structural and chemical properties parallels with CO yet, its	
compounds are often studied in the context of classical coordination	
chemistry rather than organometallic chemistry. Discuss this assertion	[2marks]
(b).) (i). Define Tolman cone angle	[2marks]
(ii) The Tolman cone angles of PPh_3 and $P(4-MeC_6H_4)_3$ ligands are both	
145°, but that of P(2-MeC ₆ H ₄) ₃ is 194°. Draw the three ligands and	
comment on their Tolman cone angle	[2.5marks]
(c). (i). Distinguish between a singlet and tripet carbene	
(11). Discuss the difference between Schrock carbenes and Fischer carbenes in their bonding properties?	[2.5 marks]
(d). (i). Name Product A and B in the following reaction	[2marks]

- (ii). What are the major products **A**, **B** and **C** of the reactions shown below? [3 marks]
 - (a) WMe₆ + excess CO $\xrightarrow{25^{\circ}C}$ A (b) Cr(CO)₆ + PhLi \longrightarrow B $\xrightarrow{MeO^{+}BF_{4}}$ C