CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

CHEM 323: CHEMICAL KINETICS

STREAMS:

TIME: 2 HOURS

11.30 A.M - 1.30 P.M.

DAY/DATE: THURSDAY 04/11/2021

INSTRUCTIONS:

• Answer ALL Questions

QUESTION ONE (30 Marks)

1a (i). For the reaction

 $2NO+2H_{2}\vec{k}N_{2}+2H_{2}O$

Following mechanism has been proposed:

NO +NO \rightleftharpoons N_2O_2; with K_1 as the rate of forward reaction and $K_{\text{-1}}$ as the rate of the reverse reaction

 $N_{2}O_{2}\vec{k}_{2}N_{2}O + H_{2}O$ $N_{2}O + H_{2}\vec{k}_{3}N_{2} + H_{2}O$

On the basis of the above mechanism, derive the rate law of N_2 (12 marks)

(ii) Consider the parallel reaction

In an experiment, it was observed that 80% decomposition of A takes place in 40 minutes and analysis of product showed that 60% of B and 40% of C are present. Calculate K_1 and K_2 .

(b) Write short notes on catalytic poisoning (8 marks)

(c). Predict how the total pressure varies during the gas phase decomposition in a constant volume container (4

marks)

 $2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$

QUESTION TWO (20 MARKS)

2a (i). An actinometer uses a solution of $K_3[Fe(C_2O_4)_3]$ in which Fe^{3+} is reduced and the oxalate ion is oxidized. Assuming $\emptyset = 1.24$ at 310 nm. Calculate the intensity of the incident light which produces 1.3×10^{-5} moles of Fe^{2+} in 36.5 min. (9 marks)

(ii). The same light source is used to irradiate a sample of CH₂CO for a period of 15.2 min. If the quantum yield of C₂H₂ is 1.0 and that of CO is 2.0, determine the amount of each gas produced by the photochemical reaction. (h = 6.62608×10^{-34} JS, NA= 6.02214×10^{23} mol⁻¹, C= 2.99792558×10^8 ms⁻¹, 1nm = 10^{-9} M) (5 marks)

(b) An aqueous solution of a compound A of concentration 10^{-3} moles/litre absorbs 50% of incident radiation in a cell length 1cm and another compound B of concentration 2×10^{-3} moles/litre absorbs 60% of the incident radiation at a particular wavelength. Calculate the percentage absorbed in a solution containing 10^{-3} moles/litre of A and B each in the same cell at the wavelength. (6 marks)

QUESTION THREE (20 MARKS)

3a) A undergoes two simultaneous reactions to produce B and C according to

 $A \vec{\kappa_1} B A \vec{\kappa_2} C$

- -

(6 marks)

Show that Ea, the observed activation energy for the disappearance of A is given by the equation:

$$Ea = \frac{K_1 E_1 + K_2 E_2}{K_1 + K_2}$$
(7 marks)

(b). The decomposition of PH3 at 950 K is observed and noting the change in total pressure as a function of time. The reaction is;

$$4PH_{3(g)} \rightarrow P_{4(g)} + 6H_{2(g)}$$

The following measurements were made on the system containing only PH₃ initially

Time (sec)	0	50	100
P (total) mmHg	200	299	332

Show that, it is a first order reaction and also calculate the rate constant	(8 marks)
(c) Derive the Michaelis- Menten equation	(5 marks)

••