## CHUKA



UNIVERSITY

SUPPLEMENTARY/ SPECIAL EXAMINATIONS
EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

## CHEM 323: CHEMICAL KINETICS

STREAMS:
TIME: 2 HOURS
DAY/DATE: MONDAY 01/02/2021
8.30 AM - 10.30 AM

INSTRUCTIONS:

## Answer ALL Questions

QUESTION ONE (30 Marks)
1a (i). For the reaction

$$
2 \mathrm{NO}+2 \mathrm{H}_{2} \overrightarrow{\mathrm{~K}} \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Following mechanism has been proposed:
$\mathrm{NO}+\mathrm{NO} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}$; with $\mathrm{K}_{1}$ as the rate of forward reaction and $\mathrm{K}_{-1}$ as the rate of the reverse reaction

$$
\begin{align*}
& \mathrm{N}_{2} \mathrm{O}_{2} \overrightarrow{\mathrm{~K}}_{2} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \overrightarrow{\mathrm{~K}}_{3} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{align*}
$$

On the basis of the above mechanism, derive the rate law of $N_{2}$ marks)
(ii) Consider the parallel reaction


In an experiment, it was observed that $80 \%$ decomposition of $A$ takes place in 40 minutes and analysis of product showed that $60 \%$ of $B$ and $40 \%$ of $C$ are present. Calculate $K_{1}$ and $K_{2}$.
(6 marks)
(b) Write short notes on catalytic poisoning
(8 marks)
(c). Predict how the total pressure varies during the gas phase decomposition in a constant volume container
(4 marks)

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5(g)} \rightarrow 4 \mathrm{NO}_{2(g)}+\mathrm{O}_{2(g)}
$$

## QUESTION TWO (20 MARKS)

2a (i). An actinometer uses a solution of $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ in which $\mathrm{Fe}^{3+}$ is reduced and the oxalate ion is oxidized. Assuming $\varnothing=1.24$ at 310 nm . Calculate the intensity of the incident light which produces $1.3 \times 10^{-5}$ moles of $\mathrm{Fe}^{2+}$ in 36.5 min .
(9 marks)
(ii). The same light source is used to irradiate a sample of $\mathrm{CH}_{2} \mathrm{CO}$ for a period of 15.2 min . If the quantum yield of $\mathrm{C}_{2} \mathrm{H}_{2}$ is 1.0 and that of CO is 2.0 , determine the amount of each gas produced by the photochemical reaction. $\left(\mathrm{h}=6.62608 \times 10^{-34} \mathrm{JS}, \mathrm{NA}=6.02214 \times 10^{23} \mathrm{~mol}^{-1}, \mathrm{C}=2.99792558\right.$ $\times 10^{8} \mathrm{~ms}^{-1}, 1 \mathrm{~nm}=10^{-9} \mathrm{M}$ )
(b) An aqueous solution of a compound A of concentration $10^{-3} \mathrm{moles} /$ litre absorbs $50 \%$ of incident radiation in a cell length 1 cm and another compound B of concentration $2 \times 10^{-3}$ moles/litre absorbs $60 \%$ of the incident radiation at a particular wavelength. Calculate the percentage absorbed in a solution containing $10^{-3} \mathrm{moles} /$ litre of A and B each in the same cell at the wavelength.

## QUESTION THREE (20 MARKS)

3a. A undergoes two simultaneous reactions to produce B and C according to

$$
A \vec{\kappa}_{1} B \quad, \quad A \vec{k}_{2} C
$$

Show that Ea, the observed activation energy for the disappearance of A is given by the equation:

$$
\begin{equation*}
E a=\frac{K_{1} E_{1}+K_{2} E_{2}}{K_{1}+K_{2}} \tag{7marks}
\end{equation*}
$$

(b). The decomposition of PH 3 at 950 K is observed and noting the change in total pressure as a function of time. The reaction is;
$4 \mathrm{PH}_{3(\mathrm{~g})} \rightarrow \mathrm{P}_{4(\mathrm{~g})}+6 \mathrm{H}_{2(\mathrm{~g})}$
The following measurements were made on the system containing only $\mathrm{PH}_{3}$ initially

| Time (sec) | 0 | 50 | 100 |
| :--- | :--- | :--- | :--- |
| $\mathbf{P}_{\text {(total) }} \mathbf{m m H g}$ | 200 | 299 | 332 |

Show that, it is a first order reaction and also calculate the rate constant
(c) Derive the Michaelis- Menten equation

