Page 1 of 3

(f) Discuss, with the aid of relevant diagrams and calculations, the Jahn-Teller effect in $[CuCl_6]^{4-}$ complex (6 marks)

Calculate the spin only magnetic moment of each of the following species (6 marks)

(iii) $[Ni(CN)_4]^{2-}$

- (c) (3 marks)
 - Describe bonding in the $[Mn(H_2O)_6]^{3+}$ ion using the valence bond theory

(ii) $[CoCl_4]^{2-}$

- State three limitations of the valence bond theory (3 marks) (d)
- (i) $[Co(NH_3)_4Cl_2]^+$ (ii) $[Co(NH_3)_3Cl_3]$ (iii) [Co(NH₃)₅NO₂]²⁺ (iv) [Cr(NH₃)₅Cl]NO₂

Write the IUPAC names of the following coordination compounds

INSTRUCTIONS: Answer question **One** (Compulsory) and any other **Two** questions

CHEM 313: COORDIATION CHEMISTRY

TIME: 2 HOURS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR **OF SCIENCE IN FOOD SCIENCE AND TECHNOLOGY AND HUMAN NUTRITION & DIETETICS**

UNIVERSITY EXAMINATIONS

STREAMS: BSc (CHEM), BSc (IND CHEM), BED (SCI)

DAY/DATE: FRIDAY 09/7/2021

QUESTION ONE [30 MARKS]

(i) $[Cr(NH_3)_6]Br_3$

(a)

(e)

CHUKA

(i) $[Fe(CN)_6]^{3-1}$ (ii) $[Cr(H_2O)_3(NH_3)_3]Cl_3$ (iii) $K_3[Fe(C_2O_4)_3]$ (v) $[Pt(NH_3)_4Cl_2][PtCl_4]$ (vi) $[Co(H_2O)_3(CH_3NH_2)_3]^{3+}$ (iv) $[Co(NH_3)_3(NO_2)_3]$

- Draw the structures of all the isomers of each of the following species and state the (b) (6 marks)
- - type(s) of isomerism exhibited by each species

CHEM 313

UNIVERSITY

(iv) $[Fe(CN)_6]^{3-1}$

(6 marks)

8.30 A.M. - 10.30 A.M.

CHEM 313

QUESTION TWO [20 MARKS]

- (a) Discuss the factors that influence the ligand field splitting parameter, Δ_0 , (6 marks)
- (b) Calculate the ligand field stabilization energy (LFSE) of each of the following complexes (6 marks)

(i) $[Mn(H_2O)_6]^{2+}$	(ii) [RuCl ₆] ²⁻
(iii) $[Mn(CN)_6]^{3-}$	(iv) [CoI ₄] ²⁻

- (c) Draw a well labelled molecular orbital diagram for the Fe $(H_2O)_6]^{2+}$ and populate it with electrons (6 marks)
- (d) Use a suitable molecular orbital diagram to explain the effect of a π -acceptor ligand on the ligand field splitting parameter, Δ_0 (2 marks)

QUESTION THREE [20 MARKS]

(a) A compound consists of Pd, Cl and NH₃ in the ratio of 1:4:4.

- (i) When AgNO₃ is added to an aqueous solution of the compound, 2 moles of Cl⁻ per mole of Pd are precipitated as AgCl. Write the formula of the compound (2 marks)
- (ii) Draw all the unique isomers of the compound (2 marks)
- (b) Determine the ground state term symbols of the following complexes (6 marks)

(i) $[Fe(CN)_6]^{3-}$ (ii) $[Ni(H_2O)_6]^{2+}$ (iii) $[Cr(NH_3)_6]^{3+}$

- (c) Order the energies of the following d^2 terms and identify the ground state term (¹D, ³F, ¹G, ³P and ¹S (2 marks)
- (d) Construct a well labelled Orgel diagram for $[V(H_2O)_6]^{3+}$ complex (4 marks)
- (e) The electronic spectrum of an aqueous solution of $[V(H_2O)_6]^{3+}$ exhibits absorption bands at $\lambda_{max} = 17000$, 25000 and 38000 cm⁻¹. Assign the electronic transitions (3 marks)
- (f) Explain why a solution of the $[Mn(H_2O)_6]^{2+}$ complex has very light pink color (1 mark)

QUESTION FOUR [20 MARKS]

- (a) The most intense absorption band in the visible spectrum of $[Mn(H_2O)_6]^{2+}$ is at 24,900 cm⁻¹ and has a molar absorptivity of 0.038 Lmol⁻¹cm⁻¹. Calculate the concentration of $[Mn(H_2O)_6]^{2+}$ that is required to give an absorbance of 0.10 in a cell of path length 1.00 cm (2 marks)
- (b) The complex $[VF_6]^{3-}$ has two absorption bands at 14,800 and 23,250 cm⁻¹ and a third band in the ultraviolet. Calculate Δ_0 and B for this complex (8 marks)

CHEM 313

- (c) Construct a well labelled molecular orbital for the square planar [Ni(CN)₄]²⁻ complex and populate it with electrons (8 marks)
- (d) Explain the following observation: an aqueous solution of KMnO₄ is intense purple (2 marks)
