CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

CHEM 313: COORDINATION CHEMISTRY

STREAMS: BSC

TIME: 2 HOURS

8.30 A.M – 10.30 A.M.

DAY/DATE: FRIDAY 05/11/2021

INSTRUCTIONS:

• Answer question **One** (Compulsory) and any other **Two** questions.

QUESTION ONE [30 MARKS]

(a) Write the IUPAC names of the following coordination compounds (6 marks)

(i) $[Fe(CN)_6]^{3-}$	(ii) [Cr(H ₂ O) ₃ (NH ₃) ₃]Cl ₃	(iii) $K_3[Fe(C_2O_4)_3]$
(iv) $[Co(NH_3)_3(NO_2)_3]$	(v) $[Pt(NH_3)_4Cl_2][PtCl_4]$	(vi) $[Co(H_2O)_3(CH_3NH_2)_3]^{3+}$

(b) Draw the structures of all the isomers of each of the following species and state the type(s) of isomerism exhibited by each species (6 marks)

(i) $[Co(NH_3)_4Cl_2]^+$ (ii) $[Co(NH_3)_3Cl_3]$

- (iii) $[Co(NH_3)_5NO_2]^{2+}$ (iv) $[Cr(NH_3)_5Cl]NO_2$
- (c) Describe bonding in the $[Mn(H_2O)_6]^{3+}$ ion using the valence bond theory (3 marks)
- (d) State three limitations of the valence bond theory (3 marks)
- (e) Calculate the spin only magnetic moment of each of the following species (6 marks)

(i) $[Cr(NH_3)_6]Br_3$ (ii) $[CoCl_4]^{2-}$ (iii) $[Ni(CN)_4]^{2-}$ (iv) $[Fe(CN)_6]^{3-}$

(f) Discuss, with the aid of relevant diagrams and calculations, the Jahn-Teller effect in $[CuCl_6]^{4-}$ complex (6 marks)

CHEM 313

QUESTION TWO [20 MARKS]

(a) State the assumptions and the limitations of the valence bond theory	(4 Marks)
--	-----------

(b) Discuss bonding in the $[Co(NH_3)_6]^{3+}$ complex using the valence bond theory (6 Marks)

(c) Discuss the factors that influence the magnitude of the ligand field splitting parameter, Δ ,

(6 Marks)

(())

(d) Sketch the energy-level splitting diagram for the d-orbitals in a square planar field. Hence or otherwise, explain why d^8 complexes assume the square planar geometry (4 Marks)

QUESTION THREE [20 MARKS]

(a) Construct a well-labeled σ -only molecular orbital diagram for a ML₆ octahedral complex

	(6 Marks)
(b) With an aid of relevant diagrams, explain the effects of π -bonding on Δ_0 and e	xplain the
arrangement of ligands in the spectrochemical series	(6 Marks)
(c) State Hund's rules for ordering terms	(2 Marks)
(d) Arrange the following in order of increasing energy and identify the ground te	erm from eacl

(d) Arrange the following in order of increasing energy and identify the ground term from each set of terms: (3 Marks)

(i) ¹P, ³P, ³F, ¹G (ii) ³P, ⁵D, ³H, ¹I, ¹G (iii) ⁶S, ⁴P, ⁴G, ²I

(e) Construct an Orgel diagram for a d⁸ configuration and write the possible electronic transitions (3 Marks)

QUESTION FOUR [20 MARKS]

(a) Calculate the ligand field stabilization energy (LFSE) of each of the following complexes

(6 marks)

(i) $[Mn(H_2O)_6]^{2+}$ (ii) $[RuCl_6]^{2-}$

(iii) $[Mn(CN)_6]^{3-}$ (iv) $[CoI_4]^{2-}$

(b) The complex $[VF_6]^{3-}$ has two absorption bands at 14,800 and 23,250 cm⁻¹ and a third band in the ultraviolet. Calculate Δ_0 and B for this complex (8 marks)

(c) Construct a well labelled molecular orbital for the square planar $[Ni(CN)_4]^2$ - complex and populate it with electrons (6 marks)
