CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION
RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

CHEM 313: COORDINATION CHEMISTRY

STREAMS:
TIME: 2 HOURS

DAY/DATE: WEDNESDAY 11/08/2021
8.30 A.M - 10.30 A.M.

INSTRUCTIONS

- Answer question one and any other two questions.

QUESTION ONE (30 MARKS)
(a) Write the systematic names of the following complexes.
(i) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Pt}(\mathrm{NCS})_{6}\right]$
(ii) $\left[\mathrm{Ag}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}\right]\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ox})_{2}\right]$
iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$
iv) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\left(\mathrm{NO}_{2}\right)_{3}\right]\left(\mathrm{PO}_{4}\right)_{2}$
(b) Discuss bonding and magnetism of $\left[\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ using the valence bond theory [4 marks] (b) Explain the following observations:
(i) $\left[\mathrm{FeF}_{6}\right]^{3-}$ is colourless whereas $\left[\mathrm{CoF}_{6}\right]^{3-}$ is coloured but exhibits only a single band in the visible.
[2 marks]
(ii) Solutions of $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ions are pale blue-green but the chromate ion, $\mathrm{CrO}_{4}{ }^{2-}$ is an intense yellow
[2 marks]
(c) Draw a well labeled diagram of the splitting of d-orbitals in:
(i) Octahedral field.
[2 marks]
(ii) Tetrahedral field
[2 marks]
(iii) Square planar field
[2 marks]
(d) Discuss the effects of d-orbital splitting on the ionic radii of divalent ions of the first row transition elements.
(e) Write the structural formula of each of the following complexes.
(i) Hexaaminne chromium(III) bromide
(ii) Potassium tetracyanonickelate (II)
(iii) Tetraamine chromium (III) - μ - amido- μ-hydroxobis (ethylenediammine) iron (III) sulphate.
(iv) Hexaammine cobalt (III) pentachlorocuprate (II)
(v) Bariumdibromodioxolatocobaltate (III)

QUESTION TWO (20 MARKS)

(b) Draw the structures of and name all the stereoisomers of:
(i) $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(ii) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$
(c) The crystal field splittings, Δ, of four chromium complexes are listed in the table below. Explain the differences in values.

Complex	$\Delta\left(\mathrm{cm}^{-1}\right)$
$\left[\mathrm{Cr} \mathrm{F}_{6}\right]^{3-}$	15000
$\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}$	17,400
$\left[\mathrm{Cr}\left(\mathrm{F}_{6}\right)\right]^{2-}$	22,000
$\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$	26,600

d) Three hydrates of chromium (iii) chloride are known: form A is hexahyrate; form B is pentahydrate; and form C is tetrahydrate. Addition of excess silver ion solution 1 mole of each form results in precipitation of the following number of moles of silver chloride: from A-3; from

B-2; from C-1. Using this information deduce the actual structure of each hydrate and write the corresponding name. [6 marks]
(e) Determine the Russel-saunders terms for the $3 P^{2}$ configuration and identify the ground state term.
[3 marks]

QUESTION TWO (20 MARKS)

(a) Discuss bonding and magnetism of $\left[\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ using the valence bond theory. [4 marks]
(b) Explain the following observations:
(i) $\left[\mathrm{FeF}_{6}\right]^{3-}$ is colourless whereas $\left[\mathrm{CoF}_{6}\right]^{3-}$ is coloured but exhibits only a single band in the visible.
[2 marks]
(ii) Solutions of $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ions are pale blue-green but the chromate ion, $\mathrm{CrO}_{4}{ }^{2-}$ is an intense yellow.
(c) Draw a well labeled diagram of the splitting of d-orbitals in:
(i) Octahedral field.
(ii) Tetrahedral field
(iii) Square planar field
(d) Discuss the effects of d-orbital splitting on the ionic radii of divalent ions of the first row transition elements.

QUESTION THREE (20 MARKS)

(a) Draw an Orgel diagram for $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and label the possible transitions. [3 marks]
(b) (i) State the selection rules for electronic transitions.
[2 marks]
(ii) Sketch the electronic spectrum of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and give the transition corresponding to each peak.
(c) Discuss the molecular orbital theory and use it to account for the ligand spectrochemical series.

