CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS
RESIT/SPECIAL EXAMINATION
EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE
CHEM 313: COORDINATION CHEMISTRY
STREAMS: BSC
TIME: 2 HOURS
DAY/DATE: FRIDAY 13/08/2021
2.30 P.M - 4.30 P.M.

INSTRUCTIONS

- ANSWER ALL QUESTIONS

QUESTION ONE (30 MARKS)

(a) Discuss bonding and magnetism of $\left[\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ using the valence bond theory. [4 marks]
(b) Explain the following observations:
(i) $\left[\mathrm{FeF}_{6}\right]^{3-}$ is colourless whereas $\left[\mathrm{CoF}_{6}\right]^{3-}$ is coloured but exhibits only a single band in the visible.
marks]
(ii) Solutions of $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ions are pale blue-green but the chromate ion, $\mathrm{CrO}_{4}{ }^{2-}$ is an intense yellow.
[2 marks]
(c) Draw a well labeled diagram of the splitting of d-orbitals in:
(i) Octahedral field.
[2 marks]
(ii) Tetrahedral field
[2 marks]
(iii) Square planar field
[2 marks]
(d) Discuss the effects of d-orbital splitting on the ionic radii of divalent ions of the first row transition elements.
[6 marks]
e) Write the systematic names of the following complexes.
(i) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Pt}(\mathrm{NCS})_{6}\right]$
(ii) $\left[\mathrm{Ag}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}\right]\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(o x)_{2}\right]$
iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$
iv) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\left(\mathrm{NO}_{2}\right)_{3}\right]\left(\mathrm{PO}_{4}\right)_{2}$
(b) Discuss bonding and magnetism of $\left[\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ using the valence bond theory. [5 marks]

QUESTION TWO (20 MARKS)

(a) Explain the following observations:
(i) $\left[\mathrm{FeF}_{6}\right]^{3-}$ is colourless whereas $\left[\mathrm{CoF}_{6}\right]^{3-}$ is coloured but exhibits only a single band in the visible.
marks]
(ii) Solutions of $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ions are pale blue-green but the chromate ion, $\mathrm{CrO}_{4}{ }^{2-}$ is an intense yellow
(c) Draw a well labeled diagram of the splitting of d-orbitals in:
(i) Octahedral field.
(ii) Tetrahedral field
(iii) Square planar field
(d) Discuss the effects of d-orbital splitting on the ionic radii of divalent ions of the first row transition elements.
(e) Write the structural formula of each of the following complexes.
(i) Hexaaminne chromium(III) bromide
(ii) Potassium tetracyanonickelate (II)
(iii) Tetraamine chromium (III) - μ - amido- μ-hydroxobis (ethylenediammine) iron (III) sulphate.
(iv) Hexaammine cobalt (III) pentachlorocuprate (II)

QUESTION THREE (20 MARKS)

(a) Draw an Orgel diagram for $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and label the possible transitions.
(b) (i) State the selection rules for electronic transitions.
(ii) Sketch the electronic spectrum of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and give the transition corresponding to each peak.
marks]
(c) Discuss the molecular orbital theory and use it to account for the ligand spectrochemical series.
[11 marks]

