SECOND YEAR EXAMINATION FOR THE AWARD OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COSC 325: DATA STRUCTURES

STREAMS: BSC. COMP. SCI (Y2S1)
TIME: 2 HOURS
DAY/DATE: TUESDAY 23/03/2021
2.30 P.M. - 4.30 P.M

INSTRUCTIONS

- Attempt question ONE (Section A) and any other TWO from Section B
- Marks are awarded for clear and concise answers

SECTION A-COMPULSORY

QUESTION ONE [30 MARKS]
(a) Describe TWO methods used to represent 2-dimensional arrays in memory
(b) Give TWO applications of graphs
(c) Describe FOUR desirable features of an algorithm
(d) While giving relevant examples, differentiate between:

> (i) Array and linked list
(ii) Abstract data type and data structure
(iii) Pop and Push operations in a stack
(e) Describe FOUR basic operations supported by an array
(f) Distinguish between Enqueue and Dequeue operations supported by a Queue [4 Marks]

SECTION B- ANSWER ANY TWO QUESTIONS

QUESTION TWO [20 MARKS]

(a) Study the tree shown below and then answer questions that follow:

(i) List the root and all the leaves in the tree
(ii) Using the tree data, construct a heap tree
(b) Using the data $\mathbf{5 0 , 1 0 , 4 0 , 2 0}$, construct Huffman tree:

QUESTION THREE [20 MARKS]

Using the binary tree below,
(i) Illustrate how the nodes are stored in memory using pointers

(ii) Show the order of how the nodes will be visited in:
(a) In-order traversal
(b) Pre-order traversal
(c) Post order traversal

QUESTION FOUR [20 MARKS]

(a) Given the following set of data: 44, 47, $\mathbf{3 6}$ and 27.Sort the data using Bubble Sort Marks]
(b) Consider a 3×4 array that stores certain data. Illustrate how this data is represented/organized in memory if the programming language stores data in:
(i) Column major order
[5 Marks]
(ii) Row major order
[5 Marks]

QUESTION FIVE [20 MARKS]

(a) Using the data: 55, 77, $\mathbf{2 3}, \mathbf{4 8}, \mathbf{6 9}, \mathbf{8 0}, \mathbf{3 9}, \mathbf{9 9}$, construct an appropriate hash table using the hashing function Data mod 8
(b) Using the graph below, construct adjacency matrix
[10 Marks]

