UNIVERSITY

COSC 325

CHUKA

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COSC 325: DATA STRUCTURES

STREAMS: BSC. COMP. SCI (Y2S1)

TIME: 2 HOURS

2.30 P.M. – 4.30 P.M

DAY/DATE: TUESDAY 23/03/2021

INSTRUCTIONS

- Attempt question ONE (Section A) and any other TWO from Section B
- Marks are awarded for clear and concise answers

SECTION A-COMPULSORY

QUESTION ONE [30 MARKS]

(a)	Describe TWO methods used to represent 2- dimensional arrays in memory				
(b)	Give TWO applications of graphs				
(c)	Describe FOUR desirable features of an algorithm				
(d)	While giving relevant examples, differentiate between:				
	(i)	Array and linked list	[4 Marks]		
	(ii)	Abstract data type and data structure	[4 Marks]		
	(iii)	Pop and Push operations in a stack	[4 Marks]		
(e)	Describe FOUR basic operations supported by an array				
(f)	Distinguish between Enqueue and Dequeue operations supported by a Queue				

SECTION B- ANSWER ANY TWO QUESTIONS

QUESTION TWO [20 MARKS]

(a) Study the tree shown below and then answer questions that follow:

- (i) List the root and all the leaves in the tree [4 Marks]
- (ii) Using the tree data, construct a heap tree [6 Marks]
- (b) Using the data **50,10,40,20**, construct Huffman tree: [10 Marks]

QUESTION THREE [20 MARKS]

Using the binary tree below,

(i) Illustrate how the nodes are stored in memory using pointers [5 Marks]

(ii) Show the order of now the hodes will be visited in.	(ii)	Show the	order	of how	the nodes	will be	visited in:
--	------	----------	-------	--------	-----------	---------	-------------

(a)	In-order traversal	[5 Marks]
(b)	Pre-order traversal	[5 Marks]
(c)	Post order traversal	[5 Marks]

QUESTION FOUR [20 MARKS]

(a) Given the following set of data: 44, 47, 36 and 27. Sort the data using Bubble Sort

Marks]

- (b) Consider a 3 x 4 array that stores certain data. Illustrate how this data is represented/organized in memory if the programming language stores data in:
 - (i) Column major order [5 Marks]

[10

(ii) Row major order [5 Marks]

QUESTION FIVE [20 MARKS]

- Using the data: 55, 77, 23, 48, 69, 80, 39, 99, construct an appropriate hash table using the hashing function Data mod 8 [10 Marks]
- (b) Using the graph below, construct adjacency matrix [10 Marks]

