UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE

ACTM 102: FUNDAMENTALS OF ACTUARIAL MATHEMATICS I

STREAMS: BSC (ACTR SCI)
TIME: 2 HOURS

DAY/DATE: MONDAY 10/12/2018
2.30 PM - 4.30 PM

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a.) Find the survivorship function of $l x$ if force of mortality is given by

$$
\mu x=\frac{1}{100-x} \text { for } \quad x<100
$$

b.) At a certain company, the probability of each employee leaving during any given year is 5%, independent of the other employees. Those who remain with the company for 25 years are given Ksh1, 000,000 . What is the expected present value of this payment to a new starter, assuming an interest rate of $7 \% p a$ and ignoring the possibility of death?
[3 marks]
c.) A population with limiting age 100 has the following survival function:
$t P_{0}=\left(1-\frac{t}{100}\right)^{0.5}$ for $0 \leq t \leq 100$

Calculate the complete expectation of life at age 50.
[6 marks]
d.) Explain why we study fundamentals of actuarial mathematics.
[4 marks]
e.) Calculate: $5 \mid 10 q[52]$

Basis:
Mortality: AM92 Select
f.) Define the force of mortality and give its mathematical formula
[3 marks]
g.) (i.)What is annuity?
(ii.) Explain two types of annuities you know

QUESTION TWO (20 MARKS)

a.) A population is subject to a constant force of mortality of 0.015 . Calculate:
(i.) The probability that a life aged 20 exact will die before age 21.25 exact. [5 marks]
(ii.) The curtate expectation of a life aged 20 exact.
[5 marks]
b.) You are provided with the following extract from a life table:

x	$l x$
50	99,813
51	97,702
52	95,046

Calculate $0.75 p 50.5$ using two different methods.

QUESTION THREE (20 MARKS)

a.) In a special mortality table with a select period of one year, the following relationships are true for all ages:
$0.5 q_{[x]}=(0.33) q_{x}$
$0.5 q_{[x]+0.5}=(0.5) q_{x}$

Express $p[x]$ in terms of $p x$.
b.) (i.)Define and calculate the value of $5 \mid 10 q[40]+1$.

Basis: AM92 Select
(ii.) Explain the meaning of differed probabilities

QUESTION FOUR (20 MARKS)

a.) In a certain non-select mortality table that follows a uniform distribution of deaths (U.D.D.), find the values of the following in terms of $l x$;
(i.) $1.5 P 30.5$
marks]
(ii.) $\mu 30.5$
b.) State and explain the common laws of mortality

QUESTION FIVE (20 MARKS)

(a) Fill in the table below
(5 marks)

Age x	l_{x}	d_{x}	p_{x}	q_{x}
30	94726			
31			0.99839	
32	94425			0.00167
33		164		
34			0.99817	
35		182		

Using the table;
(i.) What is the proportion aged 31 expected to live to age 35
(ii) What is the average number of persons who might be expected to die between age 31 and 35 out of 3000 persons aged 30 now
[4 marks]
(b) Using the actuarial life tables, what is the chance that a male child born to a mother aged 31 and a father aged 33 will live be alive 2 years but orphaned by both parents [7 marks]

