CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE / ARTS, BSC. MATHEMATICS

MATH 409: FUNCTIONAL ANALYSIS

STREAMS: AB5 / AB1 ; EB6 Y4S2

TIME: 2 HOURS

2.30 PM - 4.30 PM

DAY/DATE : WEDNESDAY 22 /09/ 2021

INSTRUCTIONS TO CANDIDATES:

- Answer question **ONE** and **TWO** other questions
- Do not write on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

(b)

(c)

(a) Distinguish the following terms

i.	A convergence sequence and a Cauchy sequence	(2marks)
ii.	Holders Inequality and Minikowsk's Inequality	(2marks)
iii.	A Hamel base and Schauder Basis	(2marks)
iv.	A semi-norm and a para-norm	(4marks)
v.	An Iteration and a contraction mapping	(2marks)
vi.	A complete space and a compact space	(2 marks)
(i) Define a Banach space. Hence give any two examples of Banach spaces		
(ii) When are two norms said to be equivalent on a vector space?		
(i) When are two normed linear spaces said to be Isometrically Isomorphic?		
(ii) Hence show that the spaces $\mathcal{C}_{O}^{*} \sim \ell_{1}$ are Isometrically Isomorphic		

(d)	Prove that for a weakly convergent sequence, its limit point of is unique	(2, 1)
(e)	(i) Define a sesquillinear functional on normed linear spaces X and Y	(3 marks)
, ,		(2 marks)
	(ii) Hence state without proof the Riesz's Representation Theorem	(3 marks)

QUESTION TWO: (20 MARKS)

(a) State the Parallelogram law as used in inner product spaces. Hence using an appropriate example, illustrate that all Banach spaces are not necessarily inner product spaces.

(b) Define a fixed point of a mapping T of a set X . Give two cases tha point mapping.	(6 marks) t illustrate a fixed (3marks)
(c) State and prove the Banach Fixed Point Theorem on a metric space <i>X</i>	(11marks)

QUESTION THREE: (20 MARKS)

(a) Prove that on the space of all sequences S, the mapping defined by

(i)
$$P_1(x) = \sup |x_n| \forall n \ge 1$$
 is a semi-norm (3marks)

(ii)
$$p(x) = |x| = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k|}{1+|x_k|}$$
 is a paranorm (5marks)

(b) Define a norm on a linear space X. Hence show that the mapping $\|.\|: R^n \to R$ defined by

$$\| x \|_{\infty} = \left(\left(\sum_{k=1}^{n} \| x_k \|^2 \right) \right)^{\frac{1}{2}}$$
 is a normed space. (12marks)

QUESTION FOUR: (20 MARKS)

- (a) Let $T: X \to Y$ be a linear operator from a normed linear space X into a normed linear space Y, prove that T is continuous if and only if T is bounded (10 marks)
- (b) Prove that strong convergence implies weak convergence, and with an appropriate counter example show that the converse is not necessarily true (10 marks)

MATH 409

QUESTION FIVE: (20 MARKS)

- (a) Let $T: X \to Y$ be a linear operator from a normed linear space X into a normed linear space Y. Prove that :
 - (i) T is continuous iff T is bounded. (5 marks)
 - (ii) T is continuous at the origin implies that T is uniformly continuous on X

(3 marks)

- (b) Show that if $(T_n)_1^{\infty}$ be a sequence of bounded linear operators each defined on a Banach space X into a normed linear space Y such that for each $x \in X$, $\lim_{n\to\infty} T_n(x) = T(x)$ exists in Y, then T is a bounded linear operator from X into Y. (8marks)
- (c)) Define a meager subset of a metric space *X*. Hence state without proof, Baire's Category Theorem (4marks)

.....