

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF SCIENCE MATHEMATICS AND BACHELOR OF EDUCATION (SCIENCE)

MATH 405: ALGEBRA II
STREAMS: AS ABOVE
TIME: 2 HOURS
DAY/DATE: MONDAY 27/09/2021
11.30 A.M. - 1.30 P.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

a) Find two ideals I and J in the ring Z of integers such that
i. $\quad I \cup J$ is an ideal
ii. $\quad I \cup J$ is NOT an ideal
b) The addition and part of the multiplication table for the ring $\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ are given below. Use the distributive laws to complete the multiplication table below

+	a	b	c
a	a	b	c
b	b	c	a
c	c	a	b

$*$	a	b	c
a	a	a	a
b	a	c	
C	a		

b) For ant element $a \in Z$;the ring of integers let $[a]_{6}$ denote $[a] \in Z_{6}$ and $[a]_{2}$ denote $[a] \in Z_{2}$
i. Prove that the mapping $\phi: Z_{6} \rightarrow Z_{2}$ defined by $\phi\left([a]_{6}\right)=[a]_{2}$ is a homomorphism
ii. Find $\operatorname{ker} \phi$
c) Working in $\mathrm{Q}[\mathrm{x}]$, find the highest common factor of $x^{3}+x^{2}-8 x-12$ and $x^{3}+5 x^{2}+8 x+4$ and express it as a linear combination of the two functions (5 marks)
d)) If R is a commutative ring with identity, show that $R[x]$ is also a commutative ring with identity
e)
i. Show that the set of R consisting of all matrices of the form

$$
T=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] \right\rvert\, a, b, c \in Z\right\} \text { is a non-commutative ring with unity. }
$$

ii. Which elements of T are invertible?
iii. Find if $I=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \right\rvert\, a, b \in Z\right\}$ is an ideal of T

QUESTION TWO (20 MARKS)

a) Consider the set $R=\{[0],[2],[4],[6],[8],[10] .[12],[14],[16]\} \subseteq Z_{18}$.
i. Construct addition and multiplication tables for R using operations as defined in
Z_{18}
(2 marks)
ii. Show that R is a commutative ring with unity.
iii. Show that R a subring of Z_{18}
(2 marks)
iv. Does R have zero divisors?
v. Is R a field? If yes illustrate each element with its inverse (1 mark)
b) Let R be a ring in which the only ideals are $\{0\}$ and R. Prove that R is a field
(6 marks)
c) Let I be an ideal of a commutative ring R with unity. Show that if I contains a unit element, then $\mathrm{I}=\mathrm{R}$

QUESTION THREE (20 MARKS)

a) Let F be a field, and let $f(x)$ and $g(x)$ be polynomials in $F[x]$ where F is a field
i. Prove that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.

Consider the polynomials $f(x)=2 x^{2}+3 x+3$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}+1$ inthe polynomial ring $Z_{6}[x]$
s.Find:
i. $\quad \operatorname{deg}(\mathrm{f})$
ii. $\quad \operatorname{deg}(\mathrm{g})$
iii. $\quad \operatorname{deg}(f g)$
iv. why is the theorem above not satisfied
b) Let X be a non-empty set and R be the setoff all subsets of X . define addition and multiplication in R as follows

$$
\begin{aligned}
& A+B=A \cup B-A \cap B \\
& A^{*} B=A \cap B
\end{aligned}
$$

For all $A \in R$ define a function $f: R \rightarrow Z_{2}$ as $f(x)=\left\{\begin{array}{c}\overline{\mathrm{l} i f x} \in A \\ \overline{\text { O}} \text { otherwise }\end{array}\right.$
i. Show that $A+\phi=A$ and $A+A=\phi$
ii. Show that f is a homomorphism of rings

QUESTION FOUR (20 MARKS)

a) Let U be a fixed non-empty set and R be the set of subsets of U with addition and multiplication defined by $A+B=A \cup B$ and $A \times B=A \cap B$. Verify whether or not $(R,+, \times)$ is a ring.
(6 marks)
b) Let F be a field, and $\mathrm{f}(\mathrm{x})$ anon-zero polynomial in $\mathrm{F}[\mathrm{x}]$. Prove the following
i. If $g(x) \in F[x]$ is an associate of $f(x)$, then $\operatorname{deg}(g)=\operatorname{deg}(f)$.
ii. There exists a unique monic polynomial that is an associate of $f(x)$. (4 marks)
c) Let I and J be ideals in the ring Z of integers, Verify whether or not
i. $\quad I+J=\{x+y: x \in I, y \in J\}$ is an ideal
ii. $\quad I \cap J$ is an ideal

QUESTION FIVE (20 MARKS)

a) i. Use the Euclidean Algorithm to find $\operatorname{hcf}\left(x^{3}+2 x^{2}-x-2, x^{2}-4 x+3\right)$ in $\mathrm{Q}[\mathrm{x}]$. (4 marks)
ii. Hence, or otherwise, find polynomials s,t in $\mathrm{Q}[\mathrm{x}]$ for which
$\mathrm{x}-1=s\left(x^{3}+2 x^{2}-x-2\right)+t\left(x^{2}-4 x+3\right)$
iii. find $\operatorname{lcm}\left(x^{3}+2 x^{2}-x-2, x^{2}-4 x+3\right)$ (4 marks)
b) prove that in a ring of integers, every ideal is a principal ideal

