MATH 401\403

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT\SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MATH 401\403: MEASURE THEORY

STREAMS: BSC

TIME: 2 HOURS

DAY/DATE: THURSDAY 12/8/2021 2.30 P.M. – 4. 30 P.M. INSTRUCTIONS: ANSWER ALL QUESTIONS

QUESTION ONE (30 MARKS)

a)	Show that a sigma algebra is closed under countable intersections	(3 marks)
b)	Prove that any interval of the form (a, ∞) is Lebesgue measurable	(4 marks)
c)	Show that a constant function on a measurable set is measurable.	(3 marks)
d)	Define the characteristic function on a measurable subset E of R and show that it is	
	measurable	(4 marks)
e)	Let $E_1 \subseteq E_2 \subseteq E_3 \subseteq$ be a nested sequence of Lebesgue measurable sets and	
	$E = \bigcup_{n=1}^{\infty} E_n$ show that $\lim_{n \to \infty} \mu(E_n) = \mu(E)$.	(5 marks)
f)	When do we say that a property holds measure almost everyhere?	(1 mark)
g)	Define a complete measure and show that the space (R, M, μ) of Borel measure space is	
	complete.	(4 marks)
h)	Define the probability measure	(2 marks)
i)	let $f \in x$ and $f_1, f_2 \in M(x, X)$ such that $f = f_1 - f_2$ suppose that $\int f_1 d\mu < \infty$ and	
	$\int f_2 d\mu < \infty$, show that $\int f d\mu = \int f_1 d\mu - \int f_2 d\mu$	(4 marks)

MATH 401\403

QUESTION TWO (20 MARKS)

- a) Define a Lebesgue measurable subset of R. (1 mark)
 b) Show that if E is measurable, then its complement is also measurable. Hence or otherwise show that the sets Rand φ are measurable sets. (6 marks)
 c) Show that if μ*(A) = 0, then A is measurable hence or otherwise show that a countable
- set is measurable. (6 marks)
- d) Let A be a Lebesgue measurable subset of R, and B be any other subset of R. show that $\mu^*(A \cup B) + \mu^*(A \cap B) = \mu^*(A) + \mu^*(B)$. (7 marks)

QUESTION THREE (20 MARKS)

- a) Let f and g be Lebesgue measurable function and c be a non-zero constant, show that $cf, c+f, f^2, |f|, f+g$, and fg are Lebesgue measurable. (12 marks)
- b) Let f be a measurable function, prove that the following conditions are equivalent
 - i. $\{x: f(x) > \alpha\}$ is Lebesgue measurable $\forall \alpha \in R$
 - ii. $\{x: f(x) \ge \alpha\}$ is Lebesgue measurable $\forall \alpha \in R$
 - iii. $\{x: f(x) < \alpha\}$ is Lebesgue measurable $\forall \alpha \in R$
 - iv. $\{x: f(x) \le \alpha\}$ is Lebesgue measurable $\forall \alpha \in R$ (8 marks)
