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UNIVERSITY EXAMINATIONS  

 

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF 

EDUCATION SCIENCE/ARTS AND BACHELOR OF SCIENCE 

MATHEMATICS 

MATH 403: MEASURE THEORY 

               

STREAMS: B. ED (SCIENCE/ARTS), BSC. MATH        TIME: 2 HOURS 

 

DAY/DATE:  TUESDAY 21/09/2021            8.30 A.M. – 10.30 A.M. 

INSTRUCTIONS: 

 Answer question ONE and TWO other questions  

 This is a closed book exam, No reference materials are allowed in the examination room 

 There will be No use of mobile phones or any other unauthorized materials 

 

QUESTION ONE: (30 MARKS) 

 

a) Prove that if 0)(* A then for any set B, )(*)(* BBA   .   (3 marks) 

b) Prove the following properties of  an outer measure *  

i. 0)(*          (2 marks) 

ii. 0})({* x         (2 marks) 

iii. If BA  then )(*)(* BA        (2 marks) 

c) Using the properties of outer measure, prove that 

i. The unit interval ]1,0[I  is not countable 

ii. The outer measure of all the irrational numbers in ]1,0[I  is 1.  (4 marks) 

d) Define a measurable function and show that the characteristic function on a measurable set is 

measurable.            (3marks) 

e) Differentiate a finite measure and sigma finite measure.    

 (2marks) 

f) Show that  the space ),,( BR is not complete, where  is the restriction of Lebesgue measure to the 

Borel sets.           (4 marks) 
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g) Shoe that if BA is measurable whenever A and B are measurable, then BA  is measurable 

                  (4marks)  

h) Show that the integral is monotone i.e. 

i).If ),(, xXMgf
 and gf   then    gdfd    (2 marks)  

ii) If ),( xXMf
  and xFE ,  such that FE   then   E F

fdfd      (2marks) 

  

QUESTION TWO: (20 MARKS) 

a) Define a Lebesgue measurable subset of R.     (2 marks) 

b) Define a Lebesgue non-measurable. Hence show that if a set F is Lebesgue non-measurable, there 

exist a proper subset A of F such that  )(*0 A     (4 marks) 

c) Show that if 0)(* A , then A is measurable hence or otherwise show that a countable set is 

measurable.         (5 marks) 

        

d) Prove that measurable sets form a sigma algebra                                                      (9 marks) 

       

QUESTION THREE: (20 MARKS) 

a) Let 𝑋, 𝑌 be non-void sets and 𝑓: X → 𝑌 be a function. Let ℶ be the σ- algebra of subsets of 

Y and let 𝔵 = {𝑓−1(𝐸): 𝐸 ∈ ℶ}. Prove that then 𝔵 is the σ- algebra of subsets of 𝑋  

(6marks) 

b) Let A be an uncountable subset of R and define a class Ω of subsets of A as follows: 
Ω AE  { if E is countable or A-E is countable} 

i. Show that Ω is a sigma algebra      (6 marks) 

ii. Define a function :f Ω R as 


 


otherwise

countableifE
Ef

1

0
)( . 

Show that f is a measure         (8 marks)  

 

QUESTION FOUR: (20 MARKS) 

 

a) Let f be a measurable function, prove that the following conditions are equivalent 

i. })(:{ xfx  is Lebesgue measurable R  

ii. })(:{ xfx  is Lebesgue measurable R  

iii. })(:{ xfx  is Lebesgue measurable R  

iv. })(:{ xfx  is Lebesgue measurable R    (8 marks) 

 

b) Show that if f is measurable, then so are the functions 
2

f  and f .  

Is the converse true? Verify       (4 marks) 
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c) (i)State without prove the monotone convergence theorem (M.C.T)  (2 marks) 

 (ii)Show that  the sequence ],0[

1
)( nn

n
xf   for Nn  uniformly converges to 0f     

          (2 marks) 

(iii)Show that M.C.T does not apply in the sequence ],0[

1
)( nn

n
xf   for Nn . Explain your 

answer.          (4 marks) 

QUESTION FIVE: (20 MARKS) 

a)  (i)Show that intervals of the form baba :),( and Rba , are Lebesgue measurable      

          (8 marks) 

(ii) Hence conclude that the sets ],(),,[],,[ bababa  are Lebesgue measurable (6 marks) 

b) Let }{ nE be a sequence of measurable sets with the properties 
1 nn EE  and )( 1E . 

Prove  that nn

n

n EE 





 lim)(
1

       (6 marks) 

………………………………………………………………………………………………………….. 

 


