CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF **BACHELOR OF EDUCATION (SCIENCE, ARTS), BACHALOR OF SCIENCE IN MATHEMATICS, BACHELOR OF ARTS (MATH - ECONS)**

MATH 401: TOPOLOGY I

STREAMS:

TIME: 2 HOURS

DAY/DATE: MONDAY 20/09/2021

2.30 P.M - 4.30 P.M

INSTRUCTIONS

Answer Question ONE and ANY Other TWO Questions. Do not write on the question paper.

QUESTION ONE: (30 MARKS)

- (a) Distinguish the following terms as used in topology
 - (i) An indiscrete topology and a Sierpinski's topology
 - (ii) An accumulation point and an interior point p of the subset A of a topological space (X, τ)
 - (iii) A first category and second category subset A of a topological space (X, τ) .
 - A regular topological space and a perfect topological space (iv)
 - A base and a local base for the topology τ (10marks) (v)
- (b) Let (X, τ) be a topological space. Prove that a arbitrary intersection of closed sets is also closed (3marks)
- (c) Prove that if A is a subset of a discrete topology, then set of its derived points is (4marks) empty.
- (d) Consider the following topology on $X = \{a, b, c, d, e\}$ and

 $\tau = \{\{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X, \emptyset\}.$

If $B = \{a, e\}$. Show that the boundary of B, $\delta B = \overline{B} \cap \overline{X/B}$ (5marks)

MATH 401

(e) Determine the neighborhood system of a point p in an indiscrete space X (3marks)

(f) Show that for a subbases θ for a topology τ on X and a subset A of X, the class $\theta_A = \{A \cap b : b \in \theta\}$ is a subbase for the relative topology τ_A on A (5marks)

QUESTION TWO: (20 MARKS)

- (a) (i) Using a counter example show that an open function or a closed function need not be continuous (3marks)
 (ii) Let *f*: *X* → *Y* and *g*: *Y* → *Z* be continuous functions. Prove that the composite function *g* ∘ *f* is continuous (3marks)
- (b) Prove that a point p of a non-empty set X is an accumulation point of $A \subset X$ if and only if every member of some local base β_p at the point p contains a point of Adifferent from p (7marks)
- (c) Let $P: X \to Y$ be an open map and let $S \subset Y$ be any subset of Y and A is a closed set in X such that $P^{-1}(S) \subset A$. Show that $S \subset B$ and $P^{-1}(B) \subset A$. (7marks)

QUESTION THREE: (20 MARKS)

- (a) (i) Prove that a set G is open if and only if it is a neighborhood of each of its points (4marks)
 - (ii) Prove that a topological space X is a T_1 space iff every singleton subset $\{p\} \subset X$ is closed. (5marks)
- (b) Let β be a class of subsets of a non-empty set *X*. Prove that β is a base for some topology on *X* iff
 - (i) $X = \bigcup \{B: B \in \beta\}$
 - (ii) For any $B, B^* \in \beta, B \cap B^*$ is the union of members of β (11marks)

QUESTION FOUR: (20 MARKS)

- (a) Let $X = \{a, b, c, d, e\}$. Denote $\beta = \{\{a\}, \{b, c\}, \{d, e\}, \emptyset\}$. Show that β forms a base for a topology τ on X. Hence find also the topology τ . (5marks)
- (b) Let *A* be a subset of a topological space (X, τ) . Prove that τ_A is a topology on *A*, where $\tau_A = \{A \cap G : G \in \tau\}$ (8marks)

MATH 401

(c) Using appropriate counter examples show that a T_2 space $\Rightarrow T_1$ space and T_1 space $\Rightarrow T_0$ space but a T_0 space $\Rightarrow T_1$ and a T_1 space $\Rightarrow T_2$ (7marks)

QUESTION FIVE: (20 MARKS)

- (a) Let $g: X \to Y$ be a bijective and A a subset of X, prove that the following statements are equivalent.
 - (i) g is a homomorphism
 - (ii) g is open
 - (iii) g is closed
 - (iv) $g(\bar{A}) = \overline{g(A)}$ (12marks)

(b) Let $A \subset X$, where X is a non-empty topological space. Prove that $\overline{A} = \delta A \cup A^0$ (8marks)
