CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MATH 401: MEASURE THEORY

STREAMS: TIME: 2 HOURS

DAY/DATE: WEDNESDAY 03/11/2021 2.30 P.M – 4.30 P.M

INSTRUCTIONS:

ANSWER ALL THE QUESTIONS

QUESTION ONE: (30 MARKS)

a) Prove that a sigma algebra is closed under countable intersections. (5 marks)

b) Define a counting measure as follows: for any countable set E, $\mu(E)$ = number of elements of E. note that $\mu(E)$ = n if E has n elements and $\mu(E)$ = ∞ if E has infinitely many elements.

c) Show that μ is a measure. (5 marks)

d) Prove the following properties of an outer measure μ^*

i. $\mu^*(\phi) = 0$ (3 marks)

ii. $\mu^*(\{x\}) = 0$ (3 marks)

iii. If $A \subset B$ then $\mu^*(A) \le \mu^*(B)$ (3 marks)

e) Prove that if $\mu^*(A) = 0$, then A is measurable (5 marks)

f) Define a measurable function and show that the characteristic function on a measurable set is measurable. (5marks)

g) Define a Lebesgue integrable function (2 marks)

QUESTION TWO: (20 MARKS)

- a) Let X, Y be non-void sets and $f: X \to Y$ be a function. Let \beth be the σ algebra of subsets of Y and let $\mathfrak{x} = \{f^{-1}(E): E \in \beth\}$. Prove that then \mathfrak{x} is the σ algebra of subsets of X (6marks)
- b) Let A be an uncountable subset of R and define a class Ω of subsets of A as follows: $\Omega = \{E \subseteq A \text{ if E is countable or A-E is countable}\}$
 - i. Show that Ω is a sigma algebra

(6 marks)

ii. Define a function $f: \Omega \to R$ as $f(E) = \begin{cases} 0 \text{ if } E = countable \\ 1 \text{ otherwise} \end{cases}$.

Show that f is a measure

(8 marks)

QUESTION THREE: (20 MARKS)

a) Let (X, \mathfrak{X}) be a measurable space and $f: X \to \mathbb{R}^*$ be a given function. Show that the following statements are equivalent

i.
$$\{x \in X: f(x) > a\} (= f^{-1}(a, \infty]) \in \mathfrak{x} \text{ for all } a \in \mathbb{R}^*$$

ii.
$$\{x \in X: f(x) \ge a\} (= f^{-1}[a, \infty]) \in \mathfrak{x} \text{ for all } a \in \mathbb{R}^*$$

iii.
$$\{x \in X: f(x) < a\} (= f^{-1}[-\infty, a)) \in \mathfrak{x} \text{ for all } a \in \mathbb{R}^*$$

iv.
$$\{x \in X: f(x) \le a\} (= f^{-1}[-\infty, a]) \in \mathfrak{x} \text{ for all } a \in \mathbb{R}^*$$
 (8 marks)

b) Explain a uniform convergence sequence of functions

(2 marks)

(ii) Show that the sequence $f_n(x) = \frac{1}{n} \chi_{[0,n]}$ for $n \in \mathbb{N}$ uniformly converges to f = 0

(3 marks)

(iii) Show that M.C.T does not apply in the sequence $f_n(x) = \frac{1}{n} \chi_{[0,n]}$ for $n \in \mathbb{N}$. Explain your

answer. (4 marks)

(iv) State Fatous' Lemma and show that it applies in this case (3 marks)
