## CHUKA



## UNIVERSITY EXAMINATION

## RESIT /SPECIAL EXAMINATION

## EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

## MATH 401: MEASURE THEORY

STREAMS:
DAY/DATE: WEDNESDAY 03/11/2021

TIME: 2 HOURS
2.30 P.M - 4.30 P.M

## INSTRUCTIONS:

## ANSWER ALL THE QUESTIONS

## QUESTION ONE: (30 MARKS)

a) Prove that a sigma algebra is closed under countable intersections.
b) Define a counting measure as follows: for any countable set $\mathrm{E}, \mu(E)=$ number of elements of $E$. note that $\mu(E)=\mathrm{n}$ if E has n elements and $\mu(E)=\infty$ if E has infinitely many elements.
c) Show that $\mu$ is a measure.
d) Prove the following properties of an outer measure $\mu^{*}$
i. $\quad \mu^{*}(\phi)=0$ (3 marks)
ii. $\quad \mu^{*}(\{x\})=0$ (3 marks)
iii. If $A \subseteq B$ then $\mu^{*}(A) \leq \mu^{*}(B)$
e) Prove that if $\mu^{*}(A)=0$, then A is measurable
f) Define a measurable function and show that the characteristic function on a measurable set is measurable.
g) Define a Lebesgue integrable function
a) Let $X, Y$ be non-void sets and $f: \mathrm{X} \rightarrow Y$ be a function. Let Z be the $\sigma$ - algebra of subsets of Y and let $\mathfrak{x}=\left\{f^{-1}(E): E \in \mathcal{Z}\right\}$. Prove that then $\mathfrak{x}$ is the $\sigma$ - algebra of subsets of $X$ (6marks)
b) Let A be an uncountable subset of R and define a class $\Omega$ of subsets of A as follows:
$\Omega=\{E \subseteq A$ if E is countable or A-E is countable $\}$
i. Show that $\Omega$ is a sigma algebra
(6 marks)
ii. Define a function $f: \Omega \rightarrow R$ as $f(E)=\left\{\begin{array}{c}0 i f E=\text { countable } \\ 1 \text { otherwise }\end{array}\right.$.

Show that f is a measure
(8 marks)

## QUESTION THREE: (20 MARKS)

a) Let $(X, x)$ be a measurable space and $f: X \rightarrow \mathbb{R}^{*}$ be a given function. Show that the following statements are equivalent
i. $\quad\{x \in X: f(x)>a\}\left(=f^{-1}(a, \infty]\right) \in \mathfrak{x}$ for all $a \in \mathbb{R}^{*}$
ii. $\quad\{x \in X: f(x) \geq a\}\left(=f^{-1}[a, \infty]\right) \in \mathfrak{x}$ for all $a \in \mathbb{R}^{*}$
iii. $\quad\{x \in X: f(x)<a\}\left(=f^{-1}[-\infty, a)\right) \in \mathfrak{x}$ for all $a \in \mathbb{R}^{*}$
iv. $\quad\{x \in X: f(x) \leq a\}\left(=f^{-1}[-\infty, a]\right) \in \mathfrak{x}$ for all $a \in \mathbb{R}^{*}$
b) Explain a uniform convergence sequence of functions
(ii)Show that the sequence $f_{n}(x)=\frac{1}{n} \chi_{[0, n]}$ for $n \in N$ uniformly converges to $f=0$
(3 marks)
(iii)Show that M.C.T does not apply in the sequence $f_{n}(x)=\frac{1}{n} \chi_{[0, n]}$ for $n \in N$. Explain your answer.
(iv) State Fatous' Lemma and show that it applies in this case

