MATH 400(401)

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION

RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE IN BACHELOR OF

MATH 400 (401): TOPOLOGY I

STREAMS:

TIME: 2 HOURS

8.30 A.M - 10.30 A.M.

DAY/DATE: TUESDAY 4/5/2021 INSTRUCTIONS:

- Answer question **ALL** the questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

- (a) Distinguish the following terms as used in topology
 - (i) An indiscrete topology and a discrete topology
 - (ii) A dense subset and a nowhere dense subset
 - (iii) The interior of the point p and a neighborhood of the point p
 - (iv) A base and a subbase for the topology τ
 - (v) $aT_1 and T_2$ space (10 marks)
- (b) Let $p \in X$ and denote N_p the set of all neighborhood of a point p. Prove that if $N \in N_p$ and for every $M \subset X$ with $N \subset M$ it implies that $M \in N_p$ (3 marks)
- (c) Show that if *X* be a discrete topological space and that $A \subset X$, then the derived set of $A, A' = \emptyset$. (4 marks)

(d) Let $f: x_1 \to x_2$ where $x_1 = x_2 = \{0,1\}$ and are such that (x_1, D) and $(x_2, \$)$ be defined by f(1) = 1 and f(0) = 0. Show that *f* is not continuous but f^{-1} is continuous.

(4 marks)

(e) Define the term a topological property (p). Give an example for this property.

(2 marks)

(7 marks)

(f) Distinguish between a aT_1andT_2 space. Using an appropriate counter example show that a T_2 space $\Rightarrow T_1$ space but a T_1 space $\Rightarrow T_2$.

QUESTION TWO: (20 MARKS)

- (a) (i) Define a limit point of a subset A of a topological space X. (1 mark)
 - (ii) Let $X = \{a, b, c, d, f\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{c\}, \{a, f\}, \{f\}, \{b, c, f\}, \{a, b, c, f\}\}$. Let $A = \{a, c, d\}$. Show that b is a limit point of A but a is not. (6 marks)
- (b) Let (X, τ) be a topological space and $A, B \subset X$. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ (4 marks)
- (c) Let (X, τ) be a topological space and $A, B \subset X$. Denote A^0 the interior of A.
 - (i) Using an appropriate example, show that $A^0 \cup B^0 \neq (A \cup B)^0$ (4 marks)
 - (ii) Prove that $A^0 \cap B^0 = (A \cap B)^0$ (5 marks)

QUESTION THREE: (20 MARKS)

- (a) Consider the following topology on X = {a, b, c, d, e} and
 τ = {{a, b, c, d}, {a, b, c, d}, {a, b, c, d}, {a, b, e}, X, Ø}. If A = {a, b, c}. Find
 (i) The exterior of A (3 marks)
 (ii) The boundary of A (3 marks)
 - (iii) Hence show that the boundary of A, $\delta A = \overline{A} \cap \overline{X/A}$ (3mks)

(b) Let
$$X = \{a, b, c, d\}$$
 with $\tau_X = \{\{a, b\}, \{a\}, \{b\}, X, \emptyset\}$ and Let $Y = \{x, y, z, t\}$ with $\tau_Y = \{\{x\}, \{y\}, \{x, y\}, Y, \emptyset\}.$

MATH 400(401)

