CHUKA

UNIVERSITY

SUPPLEMENTARY/ SPECIAL EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 400/401: TOPOLOGY I

STREAMS:

TIME: 2 HOURS

DAY/DATE: WEDNESDAY03/02/2021 INSTRUCTIONS:

8.30 AM -10.30 AM

- Answer question **ALL** the questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

(a) Distinguish the following terms as used in topology

- (i) An indiscrete topology and a discrete topology
- (ii) A dense subset and a nowhere dense subset
- (iii) The interior of the point p and a neighborhood of the point p
- (iv) A base and a subbase for the topology τ
- (v) $a T_1 and T_2$ space
- (b) Let $p \in X$ and denote N_P the set of all neighborhood of a point p. Prove that if $N \in N_P$ and for every $M \subset X$ with $N \subset M$ it implies that $M \in N_P$ (3mks)
- (c) Show that if X be a discrete topological space and that $A \subset X$, then the derived set of $A, A' = \emptyset$. (4mks)

(d) Let $f: x_1 \to x_2$ where $x_1 = x_2 = \{0,1\}$ and are such that (x_1, D) and $(x_2, \$)$ be defined by f(1) = 1 and f(0) = 0. Show that f is not continuous but f^{-1} is continuous. (4mks)

(10mks)

(e) Define the term a topological property (p). Give an example for this property. (2mks)

(f) Distinguish between a $a T_1$ and T_2 space. Using an appropriate counter example show that a T_2 space $\Rightarrow T_1$ space but a T_1 space $\Rightarrow T_2$. (7mks)

QUESTION TWO: (20 MARKS)

(ii) Let $X = \{a, b, c, d, f\}$ and $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{c\}, \{a, f\}, \{f\}, \{b, c, f\}, \{a, b, c, f\}\}$. Let $A = \{a, c, d\}$. Show that b is a limit point of A but a is not. (6mks)

(b) Let (X, τ) be a topological space and $A, B \subset X$. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$

(4mks)

- (c) Let (X, τ) be a topological space and $A, B \subset X$. Denote A^0 the interior of A.
 - (i) Using an appropriate example, show that $A^0 \cup B^0 \neq (A \cup B)^0$ (4mks)
 - (ii) Prove that $A^0 \cap B^0 = (A \cap B)^0$ (5mks)

QUESTION THREE: (20 MARKS)

- (a) Consider the following topology on $X = \{a, b, c, d, e\}$ and $\tau = \{\{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}, X, \emptyset\}$. If $A = \{a, b, c\}$. Find
 - (i) The exterior of A (3mks)
 - (ii) The boundary of *A* (3mks)
 - (iii) Hence show that the boundary of A, $\delta A = \overline{A} \cap \overline{X/A}$ (3mks)
- (b) Let $X = \{a, b, c, d\}$ with $\tau_X = \{\{a, b\}, \{a\}, \{b\}, X, \emptyset\}$ and Let $Y = \{x, y, z, t\}$ with

$$\tau_Y = \{\{x\}, \{y\}, \{x, y\}, Y, \emptyset\}.$$

Define the function f as

Page 2 of 3

MATH 400/401

Show that the function f is a homomorphism.	(5mks)
(c) Prove that every metric space is a T_2 space.	(6mks)
