

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE), BACHELOR OF SCIENCE IN MATHEMATICS

MATH 345: OPERATIONS RESEARCH I
STREAMS:
TIME: 2 HOURS

DAY/DATE: THURSDAY 08/07/2021
8.30 A.M - 10.30 A.M

INSTRUCTIONS:

QUESTION ONE (30 MARKS)

(a) (i) State and explain three applications of operations research.
(ii) State and explain two limitations of operations research.
[3 marks]
(b) Define the following terms as used in operations research.
(i) Linear programming problem [2 marks]
(ii) Transportation problem
[2 marks]
(iii) Assignment problem
(c) Use graphical method to obtain the optimal solution for

Minimize $\mathrm{C}=11 y_{1}+7 y_{2}$
Subject to $\quad y_{1}+2 y_{2} \geq 10$
$3 y_{1}+y_{2} \geq 15$
$y_{1,} y_{2} \geq 0$
(d) Solve the following infeasible assignment problem.

	Jobs					
		1	2	3	4	5
Computer	1	70	30	X	60	30
	2	X	70	50	30	30
	3	60	X	50	70	60
	4	60	70	20	40	X

$\begin{array}{llllll}5 & 30 & 30 & 40 & X & 70\end{array}$

QUESTION TWO (20 MARKS)

(a) Use Northwest corner rule to find the feasible solution of the following transportation problem. Hence obtain the optimal solution by stepping stone method. [12 marks]

| From 1 2 3
 4 4 Supply
 1 10 30 25
 2 20 15 20
 10 14
 3 10 30 20
 20 15
 4 30 40 35
 Demand 10 15 12${ }^{2}$ | 15 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- |

(b) Solve the following unbalanced assignment problem of minimizing the total time for performing all the jobs.
[8 marks]
Jobs

		1	2	3	4	5
	Workers	A	5	2	4	2
5						
	B	2	4	7	6	6
	C	6	7	5	8	7
	D	5	2	3	3	4
	E	8	3	7	8	6
	F	3	6	3	5	7

QUESTION THREE (20 MARKS)

(a) A head of department has four lecturers to assign to pure maths (1) mechanics (2) statistics (3) and quantitative techniques (4). All the lecturers have taught the courses in the past and have been evaluated with a score from 0 to 100 as shown in the table below.

	1	2	3	4
Peter	80	55	45	45
Esther	58	35	70	50
David	70	50	80	65
Jane	90	70	40	80

Use the Hungarian algorithm to solve the problem.
[12 marks]
(b) Use the least cost method stepping stone method to obtain the minimum transportation cost given the following information.

Retail agency						
Factories	1	2	3	4	5	Capacity
1	1	9	13	36	51	50
2	24	12	16	20	1	100
3	14	33	1	23	26	150
Requirement	100	60	50	50	40	300

QUESTION FOUR (20 MARKS)

(a) Maximize $\mathrm{P}=19 x_{1}+13 x_{2}+12 x_{3}+17 x_{4}$

Subject to

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3}+2 x_{4} \leq 225 \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 117 \\
& 4 x_{1}+3 x_{2}+3 x_{3} 4 x_{4} \leq 420 \\
& \quad x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

[10 marks]
(b) Use the vogel approximation method and MODI method to find the optimal solution for the problem.

Destination

Origin	1	2	3	4	ai
1	20	22	17	4	120
2	24	37	9	7	70
3	32	37	20	15	50
bj	60	40	30	110	240

QUESTION FIVE (20 MARKS)

(a) Given ;

Minimize $\quad 18 y_{1}+12 y_{2}=C$
Subject to $\quad 2 y_{1}+y_{2} \geq 8$

$$
6 y_{1}+6 y_{2} \geq 36
$$

$$
y_{1,} y_{2} \geq 0
$$

(i) State the dual of this minimization problem.
[4 marks]
(ii) Solve the dual problem for the optimal solution.
(b) Find the optimum solution of the following problem using North West corner rule MODI method.
[10 marks]
Destination

Source	1	2	3	Capacity
A	8	9	10	42
B	9	11	11	30
C	10	12	9	28
Demand	35	40	25	100

