CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION, BACHELOR OF SCIENCE AND BACHELOR OF ARTS

MATH 345: OPERATION RESEARCH I

STREAMS: BSC, BED, B.A

TIME: 2 HOURS

DAY/DATE: THURSDAY 04/11/2021 INSTRUCTIONS 11.30 A.M - 1.30 P.M.

• Answer all the questions

QUESTION ONE

(a)Use the dual-simplex method to solve the linear programming problem

 $Min Z = 20x_1 + 16x_2$ s/t $x_1 \ge 2.5$ $x_2 \ge 6$ $2x_1 + x_2 \ge 17$ $x_1 + x_2 \ge 12$ $x_1 \ge 0, x_2 \ge 0$

[10 marks]

(b) Write the dual of the following primals

(i)
$$\begin{array}{l} Min \ Z = 5x_1 - 6x_2 + 4x_3 \\ S/t \\ 3x_1 + 4x_2 + 6x_3 \ge 9 \\ x_1 + 3x_2 + 2x_3 \ge 5 \\ 7x_1 - 2x_2 - x_3 \le 10 \\ x_1 - 2x_2 + 4x_3 \ge 4 \\ 2x_1 + 5x_2 - 3x_3 \ge 3 \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0 \end{array}$$

[6 marks]

(ii)
$$Max Z = 2x_1 + 5x_2 + 3x_3$$

$$s/t$$

$$2x_1 + 4x_2 - x_3 \le 8$$

$$-2x_1 - 2x_2 + x_3 \ge -7$$

$$x_1 + 3x_2 - 5x_3 \ge -7$$

$$4x_1 + x_2 + 3x_3 \le 4$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

[6 marks]

(c) Write the L.P in the standard format

 $Min Z=2x_1+3x_2$ s/t $x_1+x_2=10$ $-2x_1+3x_2 \le 5$ $7x_1-4x_2 \le 6$ $x_1\ge 0, x_2 \quad unrestricted$

[8 marks]

QUESTION TWO

(a) A computer center has got four programmers and the center needs to develop four application programmes. The manager of the center estimates the time(minutes) required by the respective experts to develop the programme as follows

	Programmes				
Programmers	А	В	С	D	
1	120	100	80	90	
2	80	90	110	70	
3	110	140	120	100	
4	90	90	80	90	

Required

Determine the optimal assignment and total minimum time taken in minutes [5 marks]

(b) A company is spending Kshs. 1000 on transportation of its from three plants to four distribution centers. The supply and demand of the units cost of transportation are given below

-					
Plants	D_1	D_2	D_3	D_4	Supply
P_1	10	30	50	12	7
P_2	70	30	40	60	10
P_{3}	40	10	60	20	18
Demand	5	8	7	15	

Required

Obtain the maximum saving by optimal scheduling

QUESTION THREE

Kenya breweries have two bottling plants, one located at point A and the other located at point B. Each plant produces three different types of drinks, whisky, beer and brandy. The number of bottles produced by two plants per day is as follows.

	Plant		
Drink	A	В	
Whisky	1,500	1,500	
Beer	3,000	1,000	
Brandy	2,000	5,000	

A Market survey indicates that during the month of July. There will be a demand of 20,000 bottles of whisky, 40,000 bottles of beer and 44,000 bottles of brandy. The operating cost per day for plant A and B are 600 and 400 monetary units respectively. For how many days should each plant be run so as to minimize the production cost while still meeting the market demand

[20 marks]

.....