CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN ECONSTAT, BACHELOR OF ARTS ECON MATH AND BACHELOR OF SCIENCE

MATH 344: THEORY OF ESTIMATION

STREAMS: TIME: 2 HOURS

DAY/DATE: TUESDAY 30/03/2021 8.30 A.M – 10.30 A.M

INSTRUCTIONS:

Answer Question ONE and any other TWO questions.

All workings must be shown clearly

QUESTION 1[30 MARKS]

- a) Define the following terms as used in theory of Estimation
 - (i) Mean square error consistency
 - (ii) An estimator
 - (iii) Unbiasedness
 - (iv) Sufficient statistic

[8 marks]

b) Which one of the following is not an unbiased estimator of θ ,

given that $E(x_i) = \theta$

$$T_1 = x_1 + x_2 + x_3 + x_4$$

$$T_2 = 2x_1 + 3x_2$$

$$T_3 = 4x_2 - 3x_3$$

[3 marks]

c) Differentiate between Point and Interval estimation

[4 marks]

d) Let x_i , i = 1,2,3,4, be four independent sample observations of Poisson distribution with parameter θ . Show that $T = \frac{1}{15}(2x_1 + 4x_2 + 5x_3 + 3x_4)$ is a biased estimator of θ .

Calculate the amount of bias.

e) Let T_1 be the most efficient estimator and T_2 be the unbiased estimator for unknown parameter θ . If ρ is the efficiency with respect to T_1 , show that

$$Var(T_1 - T_2) = \frac{1 - \rho}{\rho} var(T_1)$$
 [5 marks]

f) Find the sample size (n) of a random sample taken from a normal population with mean μ and variance 9 and given that \bar{X} is the mean of the random sample such that $P[\bar{x} - 1 < \mu < \bar{x} + 1] = 0.9$ [5 marks]

QUESTION 2 [20 MARKS]

- a) Consider two random samples $x_1, x_2, ..., x_{n1}$ of size n1 and $y_1, y_2, ..., y_{n2}$ of size n2 both from normal populations such that $x \sim N(\mu_1, \sigma_1^2)$ and $y \sim N(\mu_2, \sigma_2^2)$ respectively. Obtain the $(1 \alpha)100\%$ confidence interval for $(\bar{x} \bar{y})$.
- b) The distribution of x is given by $f(x) = \begin{cases} \theta^x (1-\theta)^{1-x} & , x=0,1 \\ 0 & elsewhere \end{cases}$ Show that $T = \sum x_i$ is a sufficient statistic for θ . [8Marks]

QUESTION 3 [20 MARKS]

a) Given $f(x, \theta) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty$ Find $I(\theta)$ [15 Marks]

c) Find sufficient statistic for δ^2 where $x \sim N(\mu, \delta^2)$ [5 Marks]

QUESTION 4 [20 MARKS]

a) Define a uniformly minimum variance unbiased estimator (UMVUE) T of $\tau(\theta)$.

[5 Marks]

b) If T is a consistent estimator of θ , $\emptyset(T)$ is also a consistent estimator of $\emptyset(\theta)$ where \emptyset is a continuous function, Proof. [15 Marks]

QUESTION 5 [20 MARKS]

- a) Let $x_1, x_2 ... x_3$ be a random sample from a Poisson distribution with parameter θ . Using the Cramer-Rao inequality condition, show that the mean \bar{x} is UMVUE of the population mean.
- b) Let $y_1, y_2, ... y_n$ be a random sample with a distribution given as

$$f(x) = \begin{cases} \frac{2(\beta - y)}{\beta^2}, & 0 < y < \beta \\ 0, & otherwise \end{cases}$$

i) Find an estimator of β by method of moments

[4 Marks]

ii) Determine if the estimator is unbiased

[4 Marks]