MATH 344

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

MATH 344 : THEORY OF ESTIMATION

STREAMS: BSC

TIME: 2 HOURS

11.30 A.M. - 1.30 P.M.

[8 marks]

DAY/DATE: MONDAY 01/11/2021

INSTRUCTIONS:

- Answer all questions.
- All workings must be shown clearly.

QUESTION 1[30 MARKS]

- a) Define the following terms as used in theory of Estimation
 - (i) Mean square error consistency
 - (ii) An estimator
 - (iii) Unbiasedness
 - (iv) Efficient statistic
- b) Which one of the following is not an unbiased estimator of θ ,

given that $E(x_i) = \theta$

$$T_1 = x_1 + x_2 + x_3 + x_4$$

$$T_2 = 2x_1 + 3x_2$$

$$T_3 = 4x_2 - 3x_3$$
 [3 marks]
c) Differentiate between Point and Interval estimation [4 marks]

- d) Let x_i , i = 1,2,3,4, be four independent sample observations of Poisson distribution with parameter θ . Show that $T = \frac{1}{15}(2x_1 + 4x_2 + 5x_3 + 3x_4)$ is a biased estimator of θ . Calculate the amount of bias. [5 marks]
- e) Let T_1 be the most efficient estimator and T_2 be the unbiased estimator for unknown parameter θ . If ρ is the efficiency with respect to T_1 , show that

MATH 344

$$Var(T_1 - T_2) = \frac{1 - \rho}{\rho} var(T_1)$$
 [5 marks]

f) Find sufficient statistic for δ^2 where $x \sim N(\mu, \delta^2)$ [5 marks]

QUESTION 2 [20 MARKS]

a) Consider two random samples x₁, x₂, ..., x_{n1} of size n1 and y₁, y₂, ..., y_{n2} of size n2 both from normal populations such that x~N(μ₁, σ₁²) and y~N(μ₂, σ₂²) respectively. Obtain the (1 − α)100% confidence interval for (μ₁ − μ₂). [7 marks]

b) The distribution of *x* is given by $f(x) = \begin{cases} \theta^{x}(1-\theta)^{1-x} & , x = 0, 1 \\ 0 & elsewhere \end{cases}$ Show that $T = \sum x_i$ is a sufficient statistic for θ . [8 Marks]

QUESTION 3 [20 MARKS]

- a) Define a uniformly minimum variance unbiased estimator (UMVUE) T of $\tau(\theta)$.
- [5 Marks] b) If T is a consistent estimator of θ , $\phi(T)$ is also a consistent estimator of $\phi(\theta)$ where ϕ is a continuous function, Proof. [15 Marks]
