CHUKA UNIVERSITY

JAN-MARCH 2021 EXAMINATION

MATH 344: THEORY OF ESTIMATION

STREAMS: BSc. ECONSTAT, BA ECON MATH, BED Sc.,

TIME 2 HOURS

Instructions

- Answer Question ONE and any other TWO questions.
- All workings must be shown clearly

QUESTION 1[30 MARKS]

- a) Define the following terms as used in theory of Estimation
 - (i) Mean square error consistency
 - (ii) An estimator
 - (iii) Unbiasedness
 - (iv) Sufficient statistic
- b) Which one of the following is not an unbiased estimator of θ , given that $E(x_i) = \theta$

$$T_1 = x_1 + x_2 + x_3 + x_4$$

$$T_2 = 2x_1 + 3x_2$$

$$T_2 = 4x_2 - 3x_2$$

[3 marks] erval estimation [4 marks]

[8 marks]

- c) Differentiate between Point and Interval estimation [4 marks]
 d) Let x_i, i = 1,2,3,4, be four independent sample observations of Poisson distribution with parameter θ. Show that T = ¹/₁₅(2x₁ + 4x₂ + 5x₃ + 3x₄) is a biased estimator of θ. Calculate the amount of bias. [5 marks]
- e) Let T_1 be the most efficient estimator and T_2 be the unbiased estimator for unknown parameter θ . If ρ is the efficiency with respect to T_1 , show that $Var(T_1 T_2) = \frac{1-\rho}{\rho} var(T_1)$ [5 marks]
- f) Find the sample size (n) of a random sample taken from a normal population with mean μ and variance 9 and given that \overline{X} is the mean of the random sample such that $P[\overline{x} 1 < \mu < \overline{x} + 1] = 0.9$ [5 marks]

QUESTION 2 [20 MARKS]

a) Consider two random samples $x_1, x_2, ..., x_{n1}$ of size n1 and $y_1, y_2, ..., y_{n2}$ of size n2 both from normal populations such that $x \sim N(\mu_1, \sigma_1^2)$ and $y \sim N(\mu_2, \sigma_2^2)$ respectively. Obtain the $(1 - \alpha)100\%$ confidence interval for $(\bar{x} - \bar{y})$. [7 marks]

b) The distribution of x is given by $f(x) = \begin{cases} \theta^x (1-\theta)^{1-x} & x = 0, 1 \\ 0 & elsewhere \end{cases}$ Show that $T = \sum x_i$ is a sufficient statistic for θ . [8Marks]

QUESTION 3 [20 MARKS]

- a) Given $f(x, \theta) = \frac{1}{\pi} \cdot \frac{1}{1 + (x \theta)^2}, -\infty < x < \infty$ Find $I(\theta)$ [15 Marks]
- c) Find sufficient statistic for δ^2 where $x \sim N(\mu, \delta^2)$ [5 Marks]

QUESTION 4 [20 MARKS]

- a) Define a uniformly minimum variance unbiased estimator (UMVUE) T of $\tau(\theta)$.
- [5 Marks] b) If T is a consistent estimator of θ , $\phi(T)$ is also a consistent estimator of $\phi(\theta)$ where ϕ is a continuous function, Proof. [15 Marks]

QUESTION 5 [20 MARKS]

- a) Let $x_1, x_2 \dots x_3$ be a random sample from a Poisson distribution with parameter θ . Using the Cramer-Rao inequality condition, show that the mean \bar{x} is UMVUE of the population [12 Marks] mean.
- b) Let $y_1, y_2, \dots y_n$ be a random sample with a distribution given as

$$f(x) = \begin{cases} \frac{2(\beta - y)}{\beta^2}, & 0 < y < \beta \\ 0, & otherwise \end{cases}$$

- Find an estimator of β by method of moments i) [4 Marks]
- Determine if the estimator is unbiased ii)

[4 Marks]