CHUKA

UNIVERSITY

SUPPLEMENTARY/ SPECIAL EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE, BACHELOR OF EDUCATION, BACHELOR OF ARTS

MATH 343: APPLIED STATISTICS

STREAMS: BSC, BED, BA
TIME: 2 HOURS
DAY/DATE: THURSDAY 04/02/2021
11.30 AM - 1.30 PM

INSTRUCTIONS:

ANSWER ALL THE QUESTIONS

QUESTION ONE

a) A tourist claimed that the mean age of newly married ladies in Naivasha is 16 years. A children's officer took a sample of the newly married ladies in this area and found the following information: $12,32,23,17,14,15,16,17,33$, and 21 . Is there adequate information upon which to conclude with 95% confidence that the mean is actually more than 16 years?
(6Marks)
b) A pharmaceutical company has installed a machine which fills automatically 5 gms of drug in each phial. A random sample of 16 phials was taken and it was found to contain 5.08 gms on an average in a phial. The standard deviation of the sample was 0.12 gms . Test whether the machine is in order at 5\% significance level.
(8Marks)
c) Two random samples taken from two normal populations are as follows:

Sample I $\begin{array}{llllllllll}20 & 16 & 26 & 27 & 23 & 22 & 18 & 24 & 25 & 19\end{array}$
Sample II $17 \begin{array}{lllllllllll}23 & 32 & 25 & 22 & 24 & 28 & 18 & 31 & 33 & 20 & 27\end{array}$
Estimate the variances of the populations and test whether the two populations have equal variances at alpha=5\%
(8Marks)
d) Let X be the IQ scores for a certain population, and that $X \sim N(\mu, 100)$. To test $H_{0}: \mu=110$ vs $H_{1}: \mu>110$, a random sample of size $\mathrm{n}=16$ from this population was taken. If a mean $\bar{x}=113.5$ was observed, Test the null hypothesis at

$$
\text { i. } 0.05 \text { level of significance? }
$$

ii. Level of significance?
iii. What is the P -value of this test?

QUESTION TWO

The following data represent the age $\left(\mathrm{X}_{1}\right)$ and nutrition $\operatorname{score}\left(\mathrm{X}_{2}\right)$ on health assessment (Y).

Y	X_{1}	X_{2}
20	23	3
18	40	4
30	50	3
25	30	1

Required

i. Fit a multiple linear regression model $\left(\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\beta_{2} \mathrm{X}_{2}+\mathrm{e}\right)$
ii. Determine variance of β_{0}, β_{1} and β_{2}
iii. Test hypothesis that $\left(\mathrm{X}_{1}\right)$ has no effect on Y (Take alpha=5\%)
iv. Test hypothesis that $\left(\mathrm{X}_{2}\right)$ has no effect on Y (Take alpha=5\%) (10marks)

QUESTION THREE

a) An owner of a bigurm agrees to purchase the products of a factory if the produced items do not have variance of 0.5 mm 2 in their length. To be sure of the specifications, the buyer selects a sample of 18 items from his lot. The length of each item was measured as follows:

$$
\begin{array}{lllll}
18: 57 & 18: 10 & 18: 61 & 18: 32 & 18: 33
\end{array} 18: 46
$$

On the basis of the sample data, should the buyer purchase the lot at 5% level of significance?
(10marks)
b) Two random samples taken from two normal populations are as follows:

Sample I $20 \begin{array}{lllllllll}16 & 26 & 27 & 23 & 22 & 18 & 24 & 25 & 19\end{array}$
Sample II $17 \begin{array}{llllllllll}23 & 32 & 25 & 22 & 24 & 28 & 18 & 31 & 33 & 20\end{array} 27$
Estimate the variances of the populations and test whether the two populations have equal variances at alpha= 5\%
(10 marks)

