CHUKA

EXAMINATION FOR AWARD OF DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND BACHELOR OF SCIENCE IN EDUCATION

MATH 326: METHODS OF APPLIED MATHS I

STREAMS: BSc. MATHS, BSc. ED
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 14/07/2021
2.30 P.M. - 4.30 P.M.

INSTRUCTIONS

- Answer question one and any two questions
- Adhere to the instructions on the answer booklet.

QUESTION ONE Compulsory

a. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation $y^{\prime \prime}+x^{2} y=0$, about the point $\mathrm{x}=0$ and obtain a_{4} and a_{6} (5 marks)
b. Solve in series the differential equation $y^{\prime}-y=0$, about the point $\mathrm{x}=0 \quad$ (5 marks)
c. Identify the nature of the singular points of the equation

$$
\begin{equation*}
x(x-2)^{2} y^{\prime \prime}+2(x-2) y^{\prime}+(x+3) y=0 \tag{5marks}
\end{equation*}
$$

d. Given the function $f(x)=\left\{\begin{array}{l}x,-\pi<x<0 \\ -x, 0<x<\pi\end{array}\right.$, Obtain a_{0} and a_{n} (5 marks)
e. Obtain a_{n}, for the Fourier series represented by $f(x)=e^{x}$, as a cosine Fourier series over $(0,1)$
f. Find the Laplace transform of $\frac{\sin 2 t}{t}$

QUESTION TWO

a. Prove that the Laplace transform of $L\left(e^{a t}\right)=\frac{1}{s-a}, s>a$
(5 marks)
b. Find the sine Fourier series for the function $f(x)=1$, in $0<x<\pi$
(5 marks)
c. Find the Laplace transform of the following

$$
\begin{align*}
& \text { i. } \quad t^{2} \cos 3 t \tag{5marks}\\
& \text { ii. } \quad t e^{-t} \sin 2 t \tag{5marks}
\end{align*}
$$

QUESTION THREE

a. Solve in series the differential equation, $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ about the point $\mathrm{x}=0$
b. Given the differential equation $3 x y^{\prime \prime}+2 y^{\prime}+y=0$, about the point $\mathrm{x}=0$.
i. Obtain the indicial equation of the differential equations and suggest a general solution to the equation.
ii. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation and obtain a_{1}

QUESTION FOUR

a. Given the function $f(x)=x, 0 \leq x \leq 2 \pi$, Obtain the Fourier constants a_{0}, a_{n} and b_{n}
b. Find a Fourier series to represent $f(x)=x^{2},-\pi \leq x \leq \pi$
c. Find the inverse Laplace transform of $\frac{1}{s^{2}-9}$
d. Using the Laplace transforms, to evaluate $\int_{0}^{\infty} t e^{-3 t} \sin t d t$

QUESTION FIVE

a. Given the Bessel`s differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$, about the point $\mathrm{x}=0$.
i. Obtain the indicial equation of the differential equation
ii. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation and obtain a_{2}
b. Obtain a_{0} and a_{n} and b_{n} for the Fourier series represented by $f(x)=\left\{\begin{array}{l}2,-2<x<0 \\ x, 0<x<2\end{array}\right.$
(7 marks)

