CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR AWARD OF DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND BACHELOR OF SCIENCE IN EDUCATION

MATH 326: METHODS OF APPLIED MATHS I

STREAMS: BSc. MATHS, BSc. ED TIME: 2 HOURS

DAY/DATE: WEDNESDAY 14/07/2021 2.30 P.M. – 4.30 P.M.

INSTRUCTIONS

- Answer question one and any two questions
- Adhere to the instructions on the answer booklet.

QUESTION ONE Compulsory

- a. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation $y'' + x^2y = 0$, about the point x = 0 and obtain a_4 and a_6 (5 marks)
- b. Solve in series the differential equation y' y = 0, about the point x = 0 (5 marks)
- c. Identify the nature of the singular points of the equation

$$x(x-2)^{2}y'' + 2(x-2)y' + (x+3)y = 0$$
 (5 marks)

d. Given the function
$$f(x) = \begin{cases} x, -\pi < x < 0 \\ -x, 0 < x < \pi \end{cases}$$
, Obtain a_0 and a_n (5 marks)

- e. Obtain a_n , for the Fourier series represented by $f(x)=e^x$, as a cosine Fourier series over (0, 1) (5 marks)
- f. Find the Laplace transform of $\frac{\sin 2t}{t}$ (5 marks)

QUESTION TWO

a. Prove that the Laplace transform of $L(e^{at}) = \frac{1}{s-a}$, s > a (5 marks)

b. Find the sine Fourier series for the function f(x)=1, in $0 < x < \pi$ (5 marks)

c. Find the Laplace transform of the following

i.
$$t^2 \cos 3t$$
 (5 marks)

ii. $te^{-t}\sin 2t$ (5 marks)

QUESTION THREE

a. Solve in series the differential equation, $(1-x^2)y'' - 2xy' + 2y = 0$ about the point x = 0 (10 marks)

b. Given the differential equation 3xy'' + 2y' + y = 0, about the point x = 0.

i. Obtain the indicial equation of the differential equations and suggest a general solution to the equation. (6 marks)

ii. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation and obtain a_1 (4 marks)

QUESTION FOUR

a. Given the function f(x) = x, $0 \le x \le 2\pi$, Obtain the Fourier constants a_0 , a_n and b_n

(6 marks)

b. Find a Fourier series to represent $f(x) = x^2$, $-\pi \le x \le \pi$ (6 marks)

c. Find the inverse Laplace transform of $\frac{1}{s^2-9}$ (3 marks)

d. Using the Laplace transforms, to evaluate $\int_{0}^{\infty} te^{-3t} \sin t \, dt$ (5 marks)

QUESTION FIVE

a. Given the Bessel's differential equation $x^2y'' + xy' + (x^2 - n^2)y = 0$, about the point x = 0.

i. Obtain the indicial equation of the differential equation (8 marks)

- ii. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation and obtain a_2 (5 marks)
- b. Obtain a_0 and a_n and b_n for the Fourier series represented by $f(x) = \begin{cases} 2, -2 < x < 0 \\ x, 0 < x < 2 \end{cases}$

(7 marks)

.....