FIRST YEAR EXAMINATIONS FOR THE AWARD OF BACHELOR OF SCIENCE IN MATHEMATICS.

MATH 326: METHODS OF APPLEID MATHS 1
TIME: 2 HOURS

INSTRUCTIONS

Answer question one and any other two questions

Adhere to the instructions on the answer booklet.

QUESTION ONE Compulsory.

a. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation $y^{\prime \prime}+x^{2} y=0$, about the point $\mathrm{x}=0$ and obtain a_{4} and $a_{6} \quad 6 \mathrm{mks}$
b. Solve in series the differential equation $y^{\prime}-y=0$, about the point $\mathrm{x}=0$

6 mks
c. Identify the nature of the singular points of the equation

$$
x(x-2)^{2} y^{\prime \prime}+2(x-2) y^{\prime}+(x+3) y=0
$$

6 mks
d. Given the function $f(x)=\left\{\begin{array}{l}x,-\pi<x<0 \\ -x, 0<x<\pi\end{array}\right.$, Obtain a_{0} and a_{n}

5mks
e. Obtain a_{n}, for the Fourier series represented by $f(x)=e^{x}$, as a cosine Fourier series over $(0,1)$
f. Find the Laplace transform of $\frac{\sin 2 t}{t}$

QUESTION TWO

a. Prove that the Laplace transform of $L\left(e^{a t}\right)=\frac{1}{s-a}, s>a$ 5mks
b. Find the sine Fourier series for the function $f(x)=1$, in $0<x<\pi$

5 mks
c. Find the Laplace transform of the following
i. $\quad t^{2} \cos 3 t$
ii. $t e^{-t} \sin 2 t$

5mks

QUESTION THREE

a. Solve in series the differential equation, $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ about the point $\mathrm{x}=0 \quad 10 \mathrm{mks}$
b. Given the differential equation $3 x y^{\prime \prime}+2 y^{\prime}+y=0$, about the point $\mathrm{x}=0$.
i. Obtain the indicial equation of the differential equations and suggest a general solution to the equation.
ii. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation and obtain a_{1}

QUESTION FOUR

a. Given the function $f(x)=x, 0 \leq x \leq 2 \pi$, Obtain the Fourier constants a_{0}, a_{n} and b_{n}

6 mks
b. Find a Fourier series to represent $f(x)=x^{2},-\pi \leq x \leq \pi$

6 mks
c. Find the inverse Laplace transform of $\frac{1}{s^{2}-9}$ 3 mks
d. Using the Laplace transforms, to evaluate $\int_{0}^{\infty} t e^{-3 t} \sin t d t$

5mks

QUESTION FIVE

a. Given the Bessel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$, about the point $\mathrm{x}=0$.
i. Obtain the indicial equation of the differential equation

8mks
ii. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation and obtain a_{2}

5 mks
b. Obtain a_{0} and a_{n} and b_{n} for the Fourier series represented by $f(x)=\left\{\begin{array}{l}2,-2<x<0 \\ x, 0<x<2\end{array} \quad 7 \mathrm{mks}\right.$

