CHUKA UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATIONS FOR THE AWARD OF BACHELOR OF SCIENCE IN MATHEMATICS.

MATH 326: METHODS OF APPLEID MATHS 1

TIME: 2 HOURS

INSTRUCTIONS

Answer question one and any other two questions

Adhere to the instructions on the answer booklet.

QUESTION ONE Compulsory.

- a. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation $y'' + x^2y = 0$, about the point x = 0 and obtain a_4 and a_6 6mks
- b. Solve in series the differential equation y' y = 0, about the point x = 0 6mks
- c. Identify the nature of the singular points of the equation $x(x-2)^{2} y'' + 2(x-2) y' + (x+3) y = 0$ 6mks
- d. Given the function $f(x) = \begin{cases} x, -\pi < x < 0 \\ -x, 0 < x < \pi \end{cases}$, Obtain a_0 and a_n 5mks
- e. Obtain a_n , for the Fourier series represented by $f(x) = e^x$, as a cosine Fourier series over (0, 1) 5mks
- f. Find the Laplace transform of $\frac{\sin 2t}{t}$ 5mks

QUESTION TWO

- a. Prove that the Laplace transform of $L(e^{at}) = \frac{1}{s-a}$, s > a 5mks
- b. Find the sine Fourier series for the function f(x)=1, in $0 < x < \pi$ 5mks
- c. Find the Laplace transform of the following i. $t^2 \cos 3t$ 5mks

QUESTION THREE

a. Solve in series the differential equation, $(1-x^2)y''-2xy'+2y=0$ about the point x = 0 10mks

- b. Given the differential equation 3xy'' + 2y' + y = 0, about the point x = 0.
 - i. Obtain the indicial equation of the differential equations and suggest a general solution to the equation. 6mks
 - ii. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation and obtain a_1 4mks

QUESTION FOUR

- a. Given the function f(x) = x, $0 \le x \le 2\pi$, Obtain the Fourier constants a_0 , a_n and b_n 6mks
- b. Find a Fourier series to represent $f(x) = x^2$, $-\pi \le x \le \pi$ 6mks
- c. Find the inverse Laplace transform of $\frac{1}{s^2-9}$ 3mks
- d. Using the Laplace transforms, to evaluate $\int_{0}^{\infty} te^{-3t} \sin t \, dt$ 5mks

QUESTION FIVE

a. Given the Bessel's differential equation
$$x^2y'' + xy' + (x^2 - n^2)y = 0$$
, about the point x = 0.
i. Obtain the indicial equation of the differential equation 8mks

- ii. Find the recurrence relation satisfied by coefficients in the series solution of the differential equation and obtain a_2 5mks
- b. Obtain a_0 and a_n and b_n for the Fourier series represented by $f(x) = \begin{cases} 2, -2 < x < 0 \\ x, 0 < x < 2 \end{cases}$ 7mks