CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE GENERAL

MATH 323: NUMERICAL ANALYSIS I

STREAMS:

TIME: 2 HOURS

DAY/DATE:WEDNESDAY 14/07/20218.30 A.M. – 10.30 A.M.INSTRUCTIONS:Answer Questions ONE (compulsory) and any other TWO Questions

QUESTION ONE (30 MARKS) COMPULSORY

a.	Use the trapezoidal rule with $n = 4$ to estimate	$\int_{1}^{2} \frac{1}{x}$	dx.	and Compare the estimate	
	with the exact value of the integral			(6 marks)	
b.	Find \mathbf{A}^{-1} by Gaussian elimination on the matrix $A = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	2 5 0	$\begin{pmatrix} 3\\3\\8 \end{pmatrix}$	(5 Marks)	

c. Using Lagranges interpolation formula find y(10) from the table below (5Marks)

X	1	3	4	5	7	10
у	3	31	69	131	351	1011

d. Using Newton's Divided Finite Difference Interpolation Formula, find y(8) from the table below (5 Marks)

X	5	5	9	11
у	12	13	14	16

e. Solve the equation using the Secant method for 3 iterations with $x_0 = 4$ and $x_1 = 5.5$

$$x^{3}-20=0$$
 (5 Marks)

f. Evaluate the error, absolute error and percentage error in the number 3.1415926536 and its approximate value 3.14159265
(4 Marks)

QUESTION TWO (20 MARKS)

a. Use Newton's divided differences formula to evaluate f(8) and f(15) (7 Marks)

x	4	5	7	10	11	13
y = f(x)	48	100	294	900	1210	2025

b. Compute $\int_0^1 \frac{dx}{1+x}$ correct to 4d.p for h=0.5, $\frac{h}{2} = 0.25$, $\frac{h}{4} = 0.125$ using **Romberg** method

(7 Marks]

c. Find the second derivative of the function at x=1.5 based on the finite differences for the data given in table below (6 Marks)

X	1.5	2	2.5	3	3.5	4
F(x)	3.375	7	13.625	24	38.875	59

QUESTION THREE (20 MARKS)

a. Using Newton Raphson Method, obtain $\sqrt[3]{12}$ to 4 decimal places with 5 iterations and $x_0 = 3$

(7 Marks)

(6 marks)

b. Solve the system of equations using the Gauss Elimination Method (7 Marks)

x + y + z = 7 3x + 3y + 4z = 242x + y + 3z = 16

c. Compute the integral using **Simpson's 1/3 rule** taking h=0.125

$$I = \sqrt{\frac{2}{\Pi}} \times \int_{0}^{1} e^{\frac{-x^2}{2}} dx$$

QUESTION FOUR (20 MARKS)

a. The table below gives the values of Tan x for $0.10 \le x \le 0.30$

x	0.1	0.15	0.2	0.25	0.3
y=Tanx	0.1003	0.1511	0.2027	0.2553	0.3093

Find: (a) tan0.12 (b) tan0.26 using NFDIF and NBDIF

b. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using **Simpson's** $\frac{3}{8}$ th rule taking n = 6

(8 Marks)

[6 Marks]

c. Solve the equation for a solution in the interval (1.5, 2) using the Regula Falsi method with 5 interations (6 Marks)

QUESTION FIVE (20 MARKS)

a. Set up Newton iteration for computing the square root of a positive number hence find the square root of 2 correct to six decimal places. (7 Marks)

ſ	Х	0	5	10	15	20	25
	F(x)	7	11	14	18	24	32

b. Using Newton's forward Interpolation formula find f(8) from the table given. [7 Marks]

c. Use **Cramer's rule** to solve the system of linear equations given by 2x - 3y + 4z = 333x - 2y - 2z = 2

(6 Marks)

.....