CHUKA UNIVERSITY

UNIVERSITY EXAMINATION

UNIVERSITY EXAMINATION FOR THE AWARD DEGREE OF BACHELOR OF SCIENCE GENERAL

MATH 323: NUMERICAL ANALYSIS I

DAY/DATE : JULY 2021 INSTRUCTIONS:

Answer Questions <u>ONE</u> (compulsory) and any other <u>TWO</u> Questions

QUESTION ONE (30 MARKS) COMPULSORY

a.	Use the trapezoidal rule with $n = 4$ to estimate with the exact value of the integral	$\int_{1}^{2} \frac{1}{x}$	dx.	and Compare the estimate
	with the exact value of the integral			(o marks)
b.	Find A ⁻¹ by Gaussian elimination on the matrix $A = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	2 5 0	$\begin{pmatrix} 3\\3\\8 \end{pmatrix}$	(5Marks)

c. Using Lagranges interpolation formula find y(10) from the table below (5Marks)

X	5	5	9	11
У	12	13	14	16

d. Using Newton's Backwards Finite Difference Interpolation Formula, find y(10) from the

table below

X	5	5	9	11
У	12	13	14	16

e. Solve the equation using the Secant method for 3 iterations with $x_0 = 4$ and $x_1 = 5.5$

1

TIME: 2HOURS

(5Marks)

- $x^{3}-20=0$ (5Marks)
- f. Evaluate the error, absolute error and percentage error in the number 3-1415926536 and its approximate value 3.14159265 (4Marks)

QUESTION TWO (20 MARKS)

a. Use Newtons divided differences formula to evaluate f(8) and f(15)(7Marks)

x	4	5	7	10	11	13
y = f(x)	48	100	294	900	1210	2025

- b. Compute $\int_0^1 \frac{dx}{1+x}$ correct to 4d.p for h=0.5, $\frac{h}{2} = 0.25$, $\frac{h}{4} = 0.125$ using **Romberg** method
- c. Find the second derivative of the function at x=1.5 based on the finite differences for the data given in table below

Х	1.5	2	2.5	3	3.5	4
F(x)	3.375	7	13.625	24	38.875	59

QUESTION THREE (20MARKS)

a. Using Newton Raphson Method, obtain $\sqrt[3]{12}$ to 4 decimal places with 5 iterations and $x_0 = 3$

(7Marks).

- b. Solve the system of equations using the Gauss Elimination Method (7Marks)
 - x + y + z = 73x + 3y + 4z = 242x + y + 3z = 16
- c. Compute the integral using Simpson's 1/3 rule taking h=0.125 (6 marks)

(6 Marks)

(7Marks]

$$I = \sqrt{\frac{2}{\Pi}} \times \int_{0}^{1} e^{\frac{-x^2}{2}} dx$$

QUESTION FOUR (20 MARKS)

a. The table below gives the values of Tan x for $0.10 \le x \le 0.30$

x	0.1	0.15	0.2	0.25	0.3
y=Tanx	0.1003	0.1511	0.2027	0.2553	0.3093

Find: (a) tan0.12 (b) tan0.26 using NFDIF and NBDIF (8Marks) b. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using **Simpson's** $\frac{3}{8}$ th rule taking n = 6

c. Solve the equation for a solution in the interval (1.5, 2) using the Regula Falsi method with 5 interations (6Marks)

QUESTION FIVE (20 MARKS)

- a. Set up Newton iteration for computing the square root of a positive number hence find the square root of 2 correct to six decimal places. (7 Marks)
- b. Using Newton's forward Interpolation formula find f(8) from the table given. [7 Marks]

Х	0	5	10	15	20	25
F(x)	7	11	14	18	24	32

c. Use Cramer's rule to solve the system of linear equations given by 2x - 3y + 4z = 333x - 2y - 2z = 2

(6Marks)

[6 Marks]