

V ERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND STATISTICS, GENERAL SCIENCE, BACHELOR OF EDUCATION IN ARTS/SCIENCE, BACHELOR OF ARTS MATHEMATICS AND ECONOMICS

MATH 323: NUMERICAL ANALYSIS 1

STREAMS: BED (ARTS, SCI) B.A (MATH, ECON) BSC (ECON STAT)

TIME: 2 HOURS

DAY/DATE: THURSDAY 04/02/2021

2.30 P.M – 4.30 P.M

INSTRUCTIONS: Answer Question <u>ONE</u> and any other TWO Questions

QUESTION ONE (COMPULSORY)(30MARKS)

- a. Evaluate $\int_{0}^{2} (x^{2} + 4x 1) dx$ with h = 0.25 using the Trapezoidal (7Marks)
- b. If exact value of x is $x_{exact} = 0.45606$ and the approximate value is $x_{approx} = 0.455$, find the absolute error, relative error and the percentage error (6Marks)
- c. Use the data to find Lagranges 2^{rd} degree formula and use to find the value of y at x = 1.5

```
(5Marks)
```

X	0	2	3
f(x)	-4	2	14

- d. Using the Secant method to find a root of f(x)=x-Cosx to 6 decimal places given that $x_0 = 0$ and $x_1 = 1$ (6Marks)
- e. Use the values in the table to estimate y at x=3.5 use Newton's Backward difference interpolating formula (6Marks)

	0	1	2	2	4
Х	0	1	2	3	4

У	,	7	10	13	22	43

QUESTION TWO (20MARKS)

a. Use Romberg's method to evaluate $\int_{1}^{2} \frac{1}{x} dx$ correct to 4 decimal places by taking

```
h_0 = 0.5 \ h_1 = 0.25 \ and \ h_2 = 0.125
```

(12Marks)

b. Find the cubic interpolation polynomial for the given data using Lagrange's interpolation formula hence evaluate f(2.6) (8Marks)

Х	1	2	3	4
f(x)	1.54	0.58	0.01	0.35

QUESTION THREE (20MARKS)

a. The table below shows the voltage drop (v) across a resistor for a number of different values of current (*i*)

i	0.25	0.75	1.25	1.75
v	-0.45	-0.60	0.70	1.88

- i. Use the Newton's forward difference interpolating formula to find a cubic polynomial that best describes this data (8Marks)
- ii. Use the polynomial obtained in 5a(i) above to estimate the voltage drop for i=0.4

(2Marks)

b. Find the root of the equation $Sin x = 1 + x^3$ between -2 and -1 correct to 3 decimal places using Newton Raphson method with 5 iterations (10Marks)

QUESTION FOUR (20MARKS)

a. Consider the data in the table below

X	-3		-1	0	1	2	3
f(x)	-17	-25	-13	-5	-1	23	115

i. Construct the divided difference table for the data

MATH 323

- ii. Using Newton's divided difference interpolation formula, obtain the polynomial for the given data based at $x_0 = -3$ (5Marks)
- iii. Compute f(-2.3) (2Marks)
- b. Use the Bisection method to find the root of the equation $x^2 + 4x 10 = 0$ to 6 decimal places between 1 and 2 with 5 iterations (8Marks)

QUESTION FIVE (20MARKS)

a. Compute $I_s = \int_{1.2}^{2.0} \frac{1}{2x^3 + 7} dx$ to 4 decimal places using Simpson's rule with 9 ordinates.

(10Marks)

b. Use the Regula Falsi method to compute the real root of the equation $Cos x = \sqrt{x}$ correct to 5 decimal places (10Marks)