CHUKA

UNIVERSITY

UNIVERSITY EXAMINATION
RESIT/SUPPLEMENTARY / SPECIAL EXAMINATIONS EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE /ARTS, BACHELOR OF SCIENCE, BACHELOR OF ARTS (MATHEMATICS ECONOMICS)

MATH 312/302: REAL ANALYSIS I
STREAMS:
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 11/08/2021
2.30 P.M - 4.30 P.M.

INSTRUCTIONS

- Answer question ONE and ANY other two questions
- Do not write on the question paper

QUESTION ONE: (30 MARKS)

(a) Define the following terms as used in real analysis
(i). A rational number
(ii). A closed sphere
(iii). A neighborhood of the point x
(iv). A convergence sequence
(b) Given two sets X and Y.
(i) Distinguish the difference of set Y relative to X and the complement of Y relative to X.
(ii) Show that sets $(X \backslash Y)$ and $(X \cap Y)$ are disjoint and that their union is X.
(4 marks)
(c) Show that if xandyare non-negative real numbers, then $x<y$ if andonly if $x^{2}<y^{2}$
(4 marks)
(d) Using the first principle, prove that
(i) $\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)=1$ (3marks)
(ii) $\lim _{x \rightarrow \infty} 5^{x}=\infty$ (3marks)
(iii) $\lim _{x \rightarrow-3}(5 x+2)=-13$
(iii) $\lim _{x \rightarrow \infty}(x+\sin x)=\infty$

Show that $f(x)=\frac{1}{x}$ is continouson the interval $0<x<1$ but not uniformly continuous on the same interval.

QUESTION TWO: (20 MARKS)

(a) Find if the following sets are bounded or not and if bounded find the sups and infs
(i) $S_{1}=\{x \in \mathbb{R}: a \leq x<b\}$
(ii) $S_{2}=\left\{1+(-1)^{n} \frac{1}{n}: n \in \mathbf{N}:\right\}$
(iii) $S_{2}=\left\{1+(-1)^{n} \cdot n: n \in \mathbf{N}:\right\}$
(b) Find if possible the limit superior and limit inferior of the sequences
(i) $X_{n}=n\left(1+(-1)^{n}\right): n \in \mathbf{N}$

$$
\text { (ii) } X_{n}=\left(\sin \frac{n \pi}{2}+\frac{(-1)^{n}}{n}\right): n \in \mathbf{N}
$$

(c) Define a countable set. Hence illustrate that the set of rational numbers between $[0,1]$ is countable whereas the set of real numbers \mathbb{R} is uncountable

QUESTION THREE: (20 MARKS)

(a) Let S be a non-empty subset of \mathbb{R}. Show that the rael number A is the supremum of S if and only if both the following conditions are satisfied.
(i) $x \leq A \quad \forall x \in S$
(ii) $\forall \varepsilon>0 \exists x^{\prime} \in S: A-\varepsilon<x^{\prime} \leq A$
(b) Consider the set $C[0,1]$ which represents real valued continuous functions on the interval $[0,1]$.Define a functiond: $C[0,1] \times C[0,1] \rightarrow R$ by $d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x$. Show that $(C[0,1], d)$ is a metric space.
(7 marks)
(c) (i) Determine whether the limit of the function $f(x)=\sqrt{x}$ existsat $x=0$
(ii) Show that if $\lim _{x \rightarrow x_{0}} f(x)$ exists, then that limit is unique
(3 marks)
(ii) Show
(6 marks)

