CHUKA

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE BACHELOR OF SCIENCE (ACTURIAL SCIENCE)

MATH 306: FUNDAMENTALS TO REAL ANALYSIS

STREAMS: AS ABOVE

TIME: 2 HOURS

UNIVERSITY

DAY/DATE: WEDNESDAY 07/07/2021 8.30 A.M. – 10.30 A.M.

INSTRUCTIONS:

• Answer Question **ONE** and any other **TWO** Questions

QUESTION ONE (30 MARKS)

a) Define the following terms as used in analysis A neighborhood of a point $x_0 \in \mathbb{R}$ (i) (1 mark)(ii) An interior point of a subset $A \subset \mathbb{R}$ (1 mark)(iii) A limit point x of a subset A of \mathbb{R} . (1 mark)b) Distinguish an open and closed subset of \mathbb{R} . Hence determine whether the sets $A = \left\{\frac{1}{n} : n \in N\right\}$ is open or closed. (4 marks) c) Distinguish and odd and even integer number m. Hence prove that an integer number m is even iff m^2 is even. (5 marks) d) State without proof the Completeness axiom for real numbers. (2 marks) e) Use precise definition to prove that $\lim_{x\to 3} (t^3 + 3t) = 36$ (3marks) f) Find if the following sets are bounded or not and if bounded find the sups and infs (i) $S_1 = \{x \in \mathbb{R} : a \le x < b\}$ (2marks) (ii) $S_2 = \left\{ 1 + (-1)^n \frac{1}{n} : n \in \mathbb{N} : \right\}$ (2marks)

(iii)
$$S_2 = \{1 + (-1)^n . n : n \in \mathbb{N}:\}$$
 (2marks)

g)	(i) State the Intermediate Value Theorem	(2 marks)
	(ii) Hence use it to show that the $f(x) = x^3 - 2x^2 + 2x - 4$ has	as a zero in the interval
	[0, 3]	(2 marks)
h)	Discuss the following concepts as used in analysis	
	i. A partion of a closed interval $[a, b]$	(1 mark)

ii. The Riemanns' upper sum and lower sum of the function f (2 marks)

QUESTION TWO (20 MARKS)

- a) Prove that between any two rational numbers, there is an irrational number (4 marks)
- b) Given that $x, y \in \mathbb{R}$. Then, (i)Show that if x is positive then -x is negative (2 marks) (ii) $x < y \Rightarrow \frac{1}{y} < \frac{1}{x}$ (2 marks) (iii) x < y iff $x^2 < y^2$ (2 marks)
- c) (i) Given that A ⊆ ℝ, show that A is open if and only if A = A⁰ (5 marks)
 (ii) Let Ā denote the closure of a subset A ⊂ ℝ. Prove that A = Ā if and only if A is closed. (5 marks)

QUESTION THREE (20 MARKS)

- a) Define a Cauchy sequence (x_n) in R. Hence prove that if a sequence (x_n) is convergent then it is Cauchy.
 (6 marks)
- b) Prove that every convergent sequence is bounded. Using an appropriate counter example show that the converse of this is not necessarily true (7 marks)
- c) Find the limit superior and limit inferior of the sequence

$$X_n = \left(\sin\frac{n\pi}{2} + \frac{(-1)^n}{n}\right): n \in \mathbb{N}$$
(7 marks)

QUESTION FOUR (20 MARKS)

- a) State the conditions to be satisfied for a function to be continuous at a point x = c. Hence show that the functions f(x) = |x − 2| is contionus at the point x=2 but not differentiable at the same point. (10 marks)
- b) Describe the Riemann Integrable function f on the interval[a, b]. Hence show that the function f(x) = 3x is Riemann Integrable in [0,1] (10 marks)

QUESTION FIVE (20 MARKS)

• • •

a.	(i) Show that the set of integers is countable	(4 marks)
	(ii) Prove that an infinite subset of a countable set is countable. Hence or otherwise show	
	that the set of even numbers is countable.	(6 marks)
b.	Using appropriate examples, explain the three different types of discontinuities of a	
	function	(6marks)
c.	Using the first principle find the derivative of $y = \frac{3}{x}$	(4 marks)