

UNIVERSITY

## UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE MATHEMATICS

MATH 305: ALGEBRA 1
STREAMS: AS ABOVE
TIME: 2 HOURS
DAY/DATE: TUESDAY 6/07/2021
11.30 AM - 1.30 PM

## INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely


## QUESTION ONE (30 MARKS)

a) Let *be a binary operation on the set of positive integers Determine whether or not * is Commutative and Find an identity element with respect to * if it exists
i) $\quad a * b=c$, where $c$ is the smallest integer between $a$ and $b$
ii) $a * b=c$, where $c$ is 5 more than $a+b$ (4 marks)
b) Let $S L(2, Z)$ denote the set of all $2 \times 2$ matrices with integer coefficients, whose determinant is one. Verify whether or not $S L(2, Z)$ is a group under matrix multiplication
c) Given a group G , define the centre of $\mathrm{G},(\mathrm{z}(\mathrm{G}))$ and show that it is a normal subgroup of G
d) Let G and H be groups and $\varnothing: \mathrm{G} \rightarrow H$ be a homomorphism. Define the kernel of $\emptyset$. Hence show that a homomorphism $\emptyset: G \rightarrow H$ is injective if and only if $\operatorname{ker} \varnothing=\{e\}$
(4 marks)
(2 marks)
e) Suppose $\mathrm{a}, \mathrm{b}$ and c are elements of an integral domain D such that $\mathrm{ab}=\mathrm{ac}$ and $a \neq 0$. Prove that $b=c$
(3 marks)
f) Verify whether or not the following statements are true about groups
i. A group of order 21 has a subgroup of order 5
(2 marks)
ii. A group of order 7 is abelian
(3 marks)
iii. Show that the set $S$ of permutation mappings given below forms a cyclic group.
g) $I=\left(\begin{array}{lll}1 & 2 & 34 \\ 1 & 2 & 34\end{array}\right), A=\left(\begin{array}{lll}1 & 2 & 34 \\ 2 & 3 & 41\end{array}\right), B=\left(\begin{array}{lll}1 & 2 & 34 \\ 3 & 4 & 12\end{array}\right), C=\left(\begin{array}{lll}1 & 2 & 34 \\ 4 & 1 & 23\end{array}\right)(5$ marks $)$

## QUESTION TWO (20 MARKS)

a) (i) Express the product (1 2734 )(56) in $S_{7}$ as a single permutation in matrix form
(2marks)
(ii) Express $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 5 & 9 & 4 & 2 & 1 & 6 & 3\end{array}\right)$ as a product of disjoint cycles in $S_{9}$ (2marks)
(iii) Given that $h=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{array}\right)$ is a permutation in $S_{4}$. Show that $h^{-1} \circ h=e$ (3marks)
b) Prove that every permutation can be written as as product of transpositions
c) Let n be a positive integer. Define $\phi:(Z,+) \rightarrow\left(Z_{n},{ }_{n}\right)$ as $\phi(k)=\bar{k} \quad, k \in Z$ and where $\bar{k}$ denotes the remainder of division of k by n .
i. Show that $\phi$ is a group homomorphism (3 marks)
ii. Find ker $\phi$
iii. Find the index $[Z: \operatorname{ker} \phi]$

## QUESTION THREE (20 MARKS)

a) Let G be a group in which every element has order at most 2 . Show that G is abelian (3 marks)
b) Show that in an abelian group G, the set of all elements with finite order in G is a subgroup of G.
c) Let $G$ be the set of eight elements given by $G=\{ \pm 1, \pm i, \pm j, \pm k\}$ with multiplication given by $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i, k i=-i k=j$.
i. Construct a multiplication table for the group.
(6 marks)
ii. Consider the cyclic group group $H=<1,-1>$. list all the distinct cosets of H in G . Is H a normal subgroup of G?
(6marks)

## QUESTION FOUR (20 MARKS)

a) Let $G$ be a group with identity e. Prove that:
(i) If $a, b \in G$, then $(a b)^{-1}=b^{-1} a^{-1}$
(2 marks)
(ii) If $(a b)^{2}=a^{2} b^{2} \quad \forall a, b \in G$, then $G$ is abelian (3 marks)
b) )Let H be a subgroup of G . Show that the following statements are equivalent.
(i) H is a normal subgroup of G
(ii) $x H x^{-1}=H \quad \forall x \in G$
(iii) $x H=H x \quad \forall x \in G$
(iv) $(x H)(y H)=x y H$
(10 marks)
c) Let $G=\left\langle\mathbb{R}^{+}, \times\right\rangle$, the group of positive real numbers under multiplication and $H=\langle\mathbb{R},+\rangle$, the additive group of real numbers. Show that the mapping given by $\emptyset(x)=\ln x$ is an Isomorphism.

## QUESTION FIVE (20 MARKS)

a) State without proof Sylow's theorems
b) Using the theorems in (a) above, show that a group of order 15 is cyclic ( 8 marks)
c) Prove that a group of order $p^{2}$;where p is prime is abelian

