CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE MATHEMATICS

MATH 305: ALGEBRA 1

STREAMS: AS ABOVE

TIME: 2 HOURS

11.30 AM – 1.30 PM

DAY/DATE: TUESDAY 6/07/2021

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

- a) Let *be a binary operation on the set of positive integers Determine whether or not * is Commutative and Find an identity element with respect to * if it exists
 - *i*) a * b = c, where *c* is the smallest integer between *a* and *b*
 - *ii*) a * b = c, where *c* is 5 more than a + b (4 marks)
- b) Let SL(2,Z) denote the set of all 2x2 matrices with integer coefficients, whose determinant is one. Verify whether or not SL(2,Z) is a group under matrix multiplication

(5 marks)

- c) Given a group G, define the centre of G,(z(G)) and show that it is a normal subgroup of G (4 marks)
- d) Let G and H be groups and $\emptyset: G \to H$ be a homomorphism. Define the kernel of \emptyset . Hence show that a homomorphism $\emptyset: G \to H$ is injective if and only if $ker\emptyset = \{e\}$ (4 marks)

MATH 305

(2 marks)

e)	Suppo	Suppose a,b and c are elements of an integral domain D such that $ab=ac$ and $a \neq 0$.				
	Prove	that b=c	(3 marks)			
f)	Verify whether or not the following statements are true about groups					
	i.	A group of order 21 has a subgroup of order 5	(2 marks)			
	ii.	A group of order 7 is abelian	(3 marks)			
	iii.	Show that the set S of permutation mappings given below form	ns a cyclic group.			
J	$I = (1)^{1}$	$\begin{pmatrix} 2 & 34 \\ 4 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 34 \\ 2 & 34$	$\frac{34}{5}$ (5 marks)			
5)	· - \1	$2 34^{j,n} = (2 3 41^{j,n} = (3 4 12^{j,n} = (4 1))$	23			

QUESTION TWO (20 MARKS)

a) (i) Express the product $(1 \ 2 \ 7 \ 3 \ 4)(5 \ 6)$ in S_7 as a single permutation in matrix form

	(2marks)
(ii) Express $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 8 & 5 & 9 & 4 & 2 & 1 & 6 & 3 \end{pmatrix}$ as a product of disjoint cy	ycles in S ₉
	(2marks)
(iii) Given that $h = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ is a permutation in S_4 . Show that h^2	$^{-1} \circ h = e$
	(3marks)
b) Prove that every permutation can be written as as product of trans	spositions
	(5 marks)
c) Let n be a positive integer. Define $\phi: (Z,+) \to (Z_n,+)$ as $\phi(k) =$	\overline{k} , $k \in Z$ and
where \overline{k} denotes the remainder of division of k by n.	
i. Show that ϕ is a group homomorphism	(3 marks)
ii. Find ker ϕ	(2 marks)
iii. Find the index $[Z: \ker \phi]$	(2 marks)

QUESTION THREE (20 MARKS)

a)	Let G be a group in which every element has order at most 2. Show that G is abelian		
		(3 marks)	
b)	Show that in an abelian group G, the set of all elements with finite order in	G is a	
	subgroup of G.	(5 marks)	
c)	Let G be the set of eight elements given by $G = \{\pm 1, \pm i, \pm j, \pm k\}$ with multiplication given		
	by $i^2 = j^2 = k^2 = -1$, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$.		
	i. Construct a multiplication table for the group.	(6 marks)	
	ii. Consider the cyclic group group $H = <1,-1>$. list all the distinct cost	sets of H in G.	
	Is H a normal subgroup of G?	(6marks)	

QUESTION FOUR (20 MARKS)

a) Let G be a group with identity e. Prove that: (i) If $a, b \in G$, then $(ab)^{-1} = b^{-1}a^{-1}$ (2 marks) (ii) If $(ab)^2 = a^2b^2 \quad \forall a, b \in G$, then G is abelian (3 marks) b))Let H be a subgroup of G. Show that the following statements are equivalent. (i) H is a normal subgroup of G (ii) $xHx^{-1} = H \quad \forall x \in G$ (iii) $xH = Hx \ \forall x \in G$ (iv) (xH)(yH) = xyH(10 marks) c) Let $G = \langle \mathbb{R}^+, \times \rangle$, the group of positive real numbers under multiplication and $H = \langle \mathbb{R}, + \rangle$, the additive group of real numbers. Show that the mapping given by $\phi(x) = \ln x$ is an Isomorphism. (5 marks) **QUESTION FIVE (20 MARKS)**

QUESTION FIVE (20 MARKS)

a)	State without proof Sylow's theorems	(6 marks)
b)	Using the theorems in (a) above, show that a group of order 15 is cyclic	(8 marks)
c)	Prove that a group of order p^2 ; where p is prime is abelian	(6 marks)

.....