CHUKA UNIVERSITY

UNIVERSITY EXAMINATION

UNIVERSITY EXAMINATION FOR THE AWARD DEGREE OF BACHELOR OF EDUCATION, BSC. GENERAL, ECON/MATH

MATH 304: COMPLEX ANALYSIS I

DAY/DATE : JULY 2021 INSTRUCTIONS:

TIME: 2HOURS

Answer Questions <u>ONE</u> (compulsory) and any other <u>TWO</u> Questions

QUESTION ONE (30 MARKS) COMPULSORY

a. Simplify and write the complex expression in the standard form a+bi. (1,3,3 Marks)

i.
$$\frac{1-i}{2}$$

ii. $(2-i)^2$
iii. $(\frac{1}{2}+\frac{i}{7})(\frac{3}{2}-i)$
b. If $w = f(z) = \frac{1+z}{1-z}$
i. Determine the point where $f(z)$ is not analytic (2Marks)
ii. Find $\frac{dw}{dz}$ (3Marks)
c. Evaluate the following Limits
i. $\lim_{z \to 1-i} (z^2 - 5z + 10)$ (3Marks)
ii. $\lim_{z \to 1-i} \frac{(2z+3)(2-1)}{(z^2 - 2z + 4)}$ (4Marks)
d. Show that is $f(z) = -2xy + i(x^2 - y^2)$ analytic (5Marks)

e. Convert the given Complex number into the form indicated

- i. $\sqrt{3} i$ into polar form (3Marks)
- ii. $2(\cos 120^\circ + i\sin 120^\circ)$ into Cartesian form (3Marks)

QUESTION TWO (20 MARKS)

- a. Solve the following for z
 - i. (2+3i)z=(2-i)z-i (3Mark) ii. iz+2i=4 (4Mark)
- b. i. State the Cauchy Integral formula

ii. Using the Cauchy Integral formula evaluate $\oint_C \frac{z^2 - 4z + 4}{z + i} dz$, where C is the circle |z|=2 (5Marks)

c. Compute the Laurent series for the function $f(z) = \frac{z+1}{z^3(z^2+1)}$ on the region A: 0 < |z| < 1 centered at z=0. (6Marks)

QUESTION THREE (20 MARKS)

a. Simplify
$$\frac{14+3i}{2-i}$$
 and give your answer in the form $x+iy$ (4Marks)

- b. Find all the residues of $f(z) = \frac{1}{z^2 + 2z + 10}$ (9Marks)
- c. Using DeMoivre's Theorem $(Cos\theta + iSin\theta)^n = Cosn\theta + iSinn\theta$, show that

$$Tan3\theta = \frac{3Tan\theta - Tan^{3}\theta}{1 - 3Tan^{2}\theta}$$
(7Marks)

QUESTION FOUR (20 MARKS)

- a. Solve the equation $z^2 + 4z + 5 = 0$ (3Marks)
- b. Evaluate the integral using the residue theorem with |z|=3 (13Marks)
- c. Find f(z) = u + iv, given that f(z) is analytic and $u = x^3 3x^2y$ (4Marks)

QUESTION FIVE (20 MARKS)

- a. State DeMoivre's Theorems on:
 - i. Powers of complex numbers (2Marks)
 - ii. n^{th} roots of complex numbers (2Marks)

- b. Using the Theorems stated in 5a above:
 - i. Expand $z = (1+i)^9$ (4Marks)
 - ii. Find the square roots of $z = 2 + i2\sqrt{3}$ (5Marks)
- c. Determine the region of the w-plane into which the region bounded

x=1.y=1 and x+y=1 by is mapped by the transformation $w=z^2$ (7Marks)