MATH 315/304

CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION

MATH 315/304: COMPLEX ANALYSIS

STREAMS: BED

TIME: 2 HOURS

DAY/DATE:WEDNESDAY 03/02/20218.30 A.M. – 10.30 A.M.INSTRUCTIONS:ANSWER QUESTION ALL THE QUESTIONS

QUESTION ONE (30 MARKS

a) b)	Determine the three distinct roots of the complex number $z = 2 + 2i$ Evaluate the limits of the following functions	(4 marks)
,	i. $\lim_{z \to \pi} \frac{\sin z}{\pi - z}$	(2 marks)
	ii. $\lim_{z \to i} \frac{e^{\pi z} + 1}{z^2 + 1}$	(2 marks)
c)	Solve the equation $e^{2z} = -1 + i\sqrt{3}$	(4 marks)
d)	Determine the region of convergence of the series $\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^3 4^n}$	(5 marks)
e)	Evaluate the following complex integrals	
	$c\sin \pi z^2 + \cos \pi z^2$	

i.
$$\int \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z+4)} dz \text{ where C is the circle } |z+4| = 2 \qquad (4 \text{ marks})$$

ii.
$$\int \frac{e^{2z}}{(z+1)^4} dz$$
 where C is the circle $|z-1| = 3$ (4 marks)

f) Find the Maclaurin's series for the function $f(z) = \cos z$ (5 marks)

UNIVERSITY

MATH 315/304

QUESTION TWO (20 MARKS)

a) Show that the function $u(x, y) = 2e^{-x} \sin y$ is harmonic and find the analytic function w = f(z)from its known real part $u(x, y) = 2e^{-x} \sin y$ (10 marks) $z^2 + 5$

b) Use the residue theorem to evaluate the integral
$$\oint_{c} \frac{z+5}{z^2(z+1)^3(z^2+1)} dz \quad \text{where } c; |z-2| = \frac{5}{2}$$
(10 marks)

QUESTION THREE (20 MARKS)

- a) Show that $\cos^{-1} z = -i \log[z + i(1 z^2)^{\frac{1}{2}}]$ (5 marks)
- b) Verify that the function $f(z) = x^3 \sin y 3xy^2 + i(3x^2y y^3 \cos 2x)$ is not analytic (5 marks)
- c) By expanding the function $f(z) = \frac{1}{1+z^2}$ about z = 0 and z = i, explain the difference between the two expansions (10 marks)
