

RESIT/ SPECIAL EXAMINATIONS

EXAMINATION FOR THE AWARED OF BACHELOR OF SCIENCE

MATH 301/316: LINEAR ALGEBRA II

STREAMS: BSC
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 11/8/2021
8.30 A.M. - 10.30 A.M.

INSTRUCTIONS: Answer Question ONE and Any Other TWO Questions

QUESTION ONE: (30 MARKS)

a) Given that $A=\left[\begin{array}{lll}2 & -3 & 3 \\ 3 & -4 & 3 \\ 6 & -6 & 5\end{array}\right]$, find the eigenvalues of A^{3}
(6 marks)
b) Find the symmetric matrix that correspond to the following quadratic form

$$
\begin{equation*}
q(x, y, z)=2 x^{2}-8 x z+y^{2}-16 x z+14 y z+5 z^{2} \tag{4marks}
\end{equation*}
$$

c) Prove that similar matrices have the same characteristic polynomial.
(4 marks)
d) State how elementary row operations affect the determinant of a square matrix (3 marks)
e) Show that if $A=\left[\begin{array}{cc}1 & -1 \\ 3 & 4\end{array}\right]$, then A is a zero of the function $f(t)=t^{2}-5 t+7 \quad$ (3 marks)
f) Find the minimal polynomial of the matrix $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 3 & 2 \\ 0 & -1 & 0\end{array}\right]$
g) State Cayley-Hamilton theorem and verify using a linear operator $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=,(x-3 y, 2 x+5 y)$
(5 marks)

QUESTION TWO (20 MARKS)
a) Let f be a bilinear form on R^{2} defined by $f\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=2 x_{1} y_{1}-3 x_{1} y_{2}+4 x_{2} y_{2}$. Find
i. \quad The matrix A of f in the basis $\left\{u_{1}=(1,0), u_{2}=(1,1)\right\}$
ii. The matrix B of f in the basis $\left\{v_{1}=(2,1), v_{2}=(1,-1)\right\}$
iii. The change of basis matrix P from the basis $\left\{u_{i}\right\}$ to the basis $\left\{v_{i}\right\}$ and verify that $B=P^{T} A P$.
b) Let A be the matrix
$\left[\begin{array}{ccc}1 & -3 & 2 \\ -3 & 4 & -5 \\ 2 & -5 & 8\end{array}\right]$
Apply diagonalization algorithm to obtain a matrix P such that $D=P^{T} A P \quad$ (8 marks)

QUESTION THREE (20 MARKS)

a) Apply Gram-Schmidt orthogonalization process to the basis $B=\left\{1, x, x^{2}\right\}$ in $P_{2}(x)$ with the inner product $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$ to obtain an orthogonal set
b) Let $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right]$
i. Find the characteristic polynomial of A.
ii. Find all the eigenvalues λ_{1} and λ_{2} of A and their corresponding eigenvectors.
iii. Is A diagonalizable? If yes, Determine the matrices P and D such that $D=P^{-1} A P$ such that D is diagonal.
iv. Consider a polynomial $f(x)=x^{3}-5 x^{2}+3 x+6$. Find $f\left(\lambda_{1}\right)$ and $f\left(\lambda_{2}\right)$, hence find $f(A)$
v. Find a matrix B such that $B^{2}=A$

