MATH 301/316

CHUKA

UNIVERSITY EXAMINATIONS

RESIT/ SPECIAL EXAMINATIONS

EXAMINATION FOR THE AWARED OF BACHELOR OF SCIENCE

MATH 301/316: LINEAR ALGEBRA II

STREAMS: BSC

TIME: 2 HOURS

UNIVERSITY

DAY/DATE:WEDNESDAY 11/8/20218.30 A.M. – 10.30 A.M.INSTRUCTIONS:Answer Question ONE and Any Other TWO Questions

QUESTION ONE: (30 MARKS)

a) Given that
$$A = \begin{bmatrix} 2 & -3 & 3 \\ 3 & -4 & 3 \\ 6 & -6 & 5 \end{bmatrix}$$
, find the eigenvalues of A^3 (6 marks)

b) Find the symmetric matrix that correspond to the following quadratic form

$$q(x, y, z) = 2x^2 - 8xz + y^2 - 16xz + 14yz + 5z^2$$
 (4 marks)

c) Prove that similar matrices have the same characteristic polynomial. (4 marks)

d) State how elementary row operations affect the determinant of a square matrix (3 marks)

- e) Show that if $A = \begin{bmatrix} 1 & -1 \\ 3 & 4 \end{bmatrix}$, then A is a zero of the function $f(t) = t^2 5t + 7$ (3 marks)
- f) Find the minimal polynomial of the matrix $A = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 3 & 2 \\ 0 & -1 & 0 \end{bmatrix}$ (5 marks)
- g) State Cayley-Hamilton theorem and verify using a linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y,) = (x - 3y, 2x + 5y) (5 marks)

QUESTION TWO (20 MARKS)

MATH 301/316

- a) Let f be a bilinear form on R^2 defined by $f[(x_1, x_2), (y_1, y_2)] = 2x_1y_1 3x_1y_2 + 4x_2y_2$. Find
 - i. The matrix A of f in the basis $\{u_1 = (1,0), u_2 = (1,1)\}$
 - ii. The matrix B of f in the basis $\{v_1 = (2,1), v_2 = (1,-1)\}$
 - iii. The change of basis matrix P from the basis $\{u_i\}$ to the basis $\{v_i\}$ and verify that $B = P^T A P$. (12 marks)
- b) Let A be the matrix
 - $\begin{bmatrix} 1 & -3 & 2 \\ -3 & 4 & -5 \\ 2 & -5 & 8 \end{bmatrix}$

Apply diagonalization algorithm to obtain a matrix P such that $D = P^T A P$ (8 marks)

QUESTION THREE (20 MARKS)

- a) Apply Gram-Schmidt orthogonalization process to the basis B = {1, x, x²} in P₂(x) with the inner product ⟨p,q⟩ = ∫ p(x)q(x)dx to obtain an orthogonal set (7 marks)
 b) Let A = [3 1 2 2]
 - i. Find the characteristic polynomial of A. (2 marks) ii. Find all the eigenvalues λ_1 and λ_2 of A and their corresponding eigenvectors.
 - iii. Is A diagonalizable? If yes, Determine the matrices P and D such that $D = P^{-1}AP$ such that D is diagonal. (2 marks) iv. Consider a polynomial $f(x) = x^3 - 5x^2 + 3x + 6$. Find $f(\lambda_1)$ and $f(\lambda_2)$, hence find f(A) (3 marks)
 - v. Find a matrix B such that $B^2 = A$ (2 marks)
