

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE/ARTS, BACHELORS OF SCIENCE, BACHELORS OF ARTS (MATHS-ECON)

MATH 301: LINEAR ALGEBRA II

STREAMS: " AS ABOVE"
TIME: 2 HOURS
DAY/DATE: MONDAY 29/03/2021
11.30 A.M. - 1.30 P.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely.

QUESTION ONE: (30 MARKS)

a) Given that $A=\left[\begin{array}{ccc}0 & 6 & 8 \\ 0.5 & 0 & 0 \\ 0 & 0.5 & 0\end{array}\right]$, find the eigenvalues of A^{6}
b) Find the symmetric matrix that correspond to the following quadratic form

$$
\begin{equation*}
q(x, y, z)=x y+y^{2}-4 x z+z^{2} \tag{2marks}
\end{equation*}
$$

c) Show that if $A=\left[\begin{array}{cc}1 & -1 \\ 3 & 4\end{array}\right]$, then A is a zero of the function $f(t)=t^{2}-5 t+7 \quad$ (3 marks)
d) Let A be an nxn matrix over a field K . show that the mapping $f(X, Y)=X^{T} A Y$ is a bilinear form on K^{n}
e) Let A be a diagonalizable matrix and let P be an invertible matrix such that $B=P^{-1} A P$, that is B is the diagonal form of A . Prove that $A^{k}=P B^{k} P^{-1}$ where k is a positive integer. (3 marks)
f) State how elementary row operations affect the determinant of a square matrix. Hence or otherwise show that if one row of a square matrix is a scalar multiple of another row, the determinant of that matrix is zero.
(5 marks)
g) Determine whether the quadratic form $q(x, y, z)=x^{2}-4 x z+2 y^{2}-4 y z+7 z^{2}$ is positive definite
(4 marks
h) Find the minimal polynomial of the matrix $A=\left[\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4\end{array}\right]$
(4 marks)

QUESTION TWO (20 MARKS)

a) Let A be a square matrix of order $\mathrm{n}>2$. If λ_{1} and λ_{2} are two distinct eigenvalues of A with corresponding eigenvectors v_{1} and v_{2} respectively then show that v_{1} is orthogonal to v_{2}.
(4 marks)
b) Let A be the matrix

$$
\left[\begin{array}{ccc}
2 & 2 & -2 \\
2 & -1 & 4 \\
-2 & 4 & -1
\end{array}\right]
$$

i. Find an orthogonal matrix P such that $D=P^{T} A P$ is diagonal. Find D. (8 marks)
ii. Apply diagonalization algorithm of congruent matrices to obtain a matrix P such that $D^{\prime}=P^{\prime^{T}} A P^{\prime}$. What is D in this case?
(6 marks)
iii. Differentiate P with P' and D and D' from i. and ii. Above
(2 marks)

QUESTION THREE (20 MARKS)

a) Let f be a bilinear form on R^{2} defined by
$f\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]=3 x_{1} y_{1}-2 x_{1} y_{2}+4 x_{2} y_{1}-x_{2} y_{2}$. Find
i. The matrix A of f in the basis $\left\{u_{1}=(1,-1), u_{2}=(1,1)\right\}$
ii. The matrix B of f in the basis $\left\{v_{1}=(1,2), v_{2}=(2,-1)\right\}$
iii. The change of basis matrix P from the basis $\left\{u_{i}\right\}$ to the basis $\left\{v_{i}\right\}$ and verify that

$$
\begin{equation*}
B=P^{T} A P \tag{12marks}
\end{equation*}
$$

i. Consider the quadratic form $q(x, y)=3 x^{2}+2 x y-y^{2}$ and the linear substitution $x=s-t$ and $y=s+t$
i. Rewrite $q(x, y)$ in matrix notation and find the matrix notation and find the matrix A representing $q(x, y) \quad$ (1 mark)
ii. Rewrite the linear substitution using matrix notation and find the matrix P corresponding to the substitution
(3 marks)
iii. Write the quadratic form $q(s, t)$
(2 marks)
iv. Verify part iii above using direct substitution
(2 marks)

QUESTION FOUR (20 MARKS)

a) Given that $A=\left[\begin{array}{cccc}1 & 3 & 0 & 1 \\ 2 & 5 & -3 & 1 \\ 1 & 6 & -2 & 4 \\ 0 & 1 & -3 & 7\end{array}\right]$ determine the number n_{k} and the sum S_{k} of principal minors of order 1,2 and 4.
b) Let $A=\left[\begin{array}{lll}3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2\end{array}\right]$
i. Find the characteristic polynomial of A.
(3 marks)
ii. Find all the eigenvalues of A and their corresponding eigenvectors.
(4 marks)
iii. Determine the matrix P if it exists such that $D=P^{-1} A P$ where D is diagonal.
(1 mark)
iv. Comment about the minimal polynomial of A
(2 marks)
c) State Cayley-Hamilton theorem for a linear operator and verify the theorem using a linear operator $T: R^{2} \rightarrow R^{2}$ defined by $T\left(x_{1}, x_{2}\right)=\left(4 x_{1}-3 x_{2}, x_{1}+5 x_{2}\right)$

QUESTION FIVE (20 MARKS)

a) Given a 2×2 matrix of the form $A=\left[\begin{array}{ll}a & c \\ c & b\end{array}\right]$, show that A is diagonalizable. (5 marks)
b) Let $\mathrm{V} \subset \mathrm{R}[\mathrm{x}]$ be the polynomials of degree 2 or less. let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be the linear operator $\mathrm{T}(\mathrm{p}(\mathrm{x}))$ $=(x+1) p^{\prime}(x)$. Find the minimal polynomial of T and conclude whether or not T is diagonalizable
(6 marks)
c) Apply Gram-Schmidt orthogonalization process to the basis $B=\left\{1, x, x^{2}\right\}$ in $P_{2}(x)$ with the inner product $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$ to obtain an orthogonal set (5 marks)
d) Find an orthonormal basis for the solution space to the orthonormal system of equations below

$$
\begin{align*}
x_{1}+x_{2}+7 x_{4} & =0 \\
2 x_{1}+x_{2}+2 x_{3}+6 x_{4} & =0 \tag{4marks}
\end{align*}
$$

