CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE, ARTS AND EDUCATION, BACHELOR OF PHYSICS, BACHELOR OF INDUSTRIAL CHEM, BACHELOR OF SCIENCE (COMPUTER SCIENCE, MATHEMATICS, ACTURIAL SCIENCE)

MATH 242: PROBABILITY AND STATISTICS II

STREAMS: BSC (ECON \&STAT, PHYS, COMP SCI, MATHS, ACTURIAL SCI, INDUCTRIAL SCI)

TIME: 2 HOURS
DAY/DATE: THURSDAY 08/07/2021
8.30 A.M - 10.30 A.M

INSTRUCTIONS:

Answer question one and any other two questions
QUESTION ONE (30 MARKS)
(a) Suppose that X and Y be two continuous random variables with joint density function.
$\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}k x^{3} y^{3}, & 0 \leq x \leq 2,0 \leq y \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$
(i) Find the value of k
(ii) Determine whether variables X and Y are independent.
(iii) Find $=\mathrm{P}(\mathrm{X} \leq 1 / 2: Y>1)$
(b) Let X and Y have the joint density function.
$\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{c}4 x y, 0 \leq x \leq k, 0 \leq y \leq 1 \\ 0, \\ \text { otherwise }\end{array}\right.$

Find
(i) Show that the value of k is 1
(ii) The conditional PDF of Y given $X=x$
(c) Suppose the joint probability distribution function of X and Y is represented by the following table below.

	Y						
X	1	2	3	4			
0	0.059	0.1	0.05	0.001			
1	0.093	0.12	0.082	0.003			
2	0.065	0.102	0.1	0.01			
3	0.050	0.075	0.07	0.02			

(i) Find the marginal probability distributions of X and Y [4 marks]
(ii) Find $\mathrm{E}(\mathrm{Y} / \mathrm{X}=3)$ and $\operatorname{var}(\mathrm{Y} / \mathrm{X}=3)$
(d) A fair coin is tossed 100 times. Show that the probability that the number of heads will be between $30-70$ is at least 0.94 .
[5 marks]

QUESTION TWO (20 MARKS)

(a) The joint moment generating function of $f(x, y)$ is given as

$$
\mathrm{M}\left(t_{1}, t_{2}\right)=\left[\frac{2}{3} e^{t_{1}}+\frac{1}{3} e^{t_{2}}\right]
$$

Find ;
i. Marginal moment generating function of X
[1 mark]
ii. $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$ and $\operatorname{Var}(\mathrm{X})$
(b) Suppose that X and Y are bivariate normal with $E(X)=1, E(Y)=2$, $\operatorname{Var}(X)=\operatorname{var}(Y)=\frac{1}{3}$ and the correlation of $\frac{1}{2}$. Calculate $\mathrm{P}(2.2<y<3.2 / X=3)$
[4 marks]
(c) Two normal ransom variables X and Y have joint p.d.f given by

$$
f(x)=k \exp \left(-\frac{25}{18}\right)\left\{\left(\frac{x-20}{4}\right)^{2}-0.08(x-20)(y-30)+\left(\frac{y-30}{5}\right)^{2}\right\}
$$

Where k is a constant
(i) Determine the value of the correlation coefficient
(ii) Find $\mathrm{P}(34<Y<37 / X=25)$

QUESTION THREE

(a) Let $y_{1}<y_{2}<y_{3}<y_{4}$ denote order statistics of a random sample of size 4 from a population with pdf given by;
$\mathrm{F}(\mathrm{x})=\left\{\begin{array}{cc}3 x^{2}, & 0<x<1 \\ 0 & \text { elsewhere }\end{array}\right.$
Determine
(i) The p.d.f of y_{2}
(ii)The $\mathrm{P}\left[y_{2}<\frac{1}{3}\right]$
(iii) $\mathrm{E}\left(y_{2}\right)$
(b) Suppose that x_{1} and x_{2} are independent random variables and that the p.d.f of each of these variables is;
$\mathrm{F}(\mathrm{x})=\left\{\begin{array}{cc}e^{-x} & x \geq 0 \\ 0 & \text { elsewhere }\end{array}\right.$
Find the p.d.f of $y_{1}=x_{1}+2 x_{2}$
(c) Let X have the binomial p.m.f
$\mathrm{P}(\mathrm{x}=\mathrm{x})=\left\{\begin{array}{c}\frac{3!}{x!(3-x)!}(2 / 3)^{x}(1 / 3)^{3-x}, x=0,1,2,3 \\ 0 \\ \text { elsewhere }\end{array}\right.$
Find the p.m.f of $\mathrm{Y}=x^{2}$

QUESTION FOUR (20 MARKS)

Given that x_{1} and x_{2} are jointly normally distributed random variables and that $\sigma_{1}^{2}=\sigma_{2}^{2}=1$ and $\mu_{1}=\mu_{2}=0$. Find the joint p.d.f of $y_{1}=2 x_{1}+x_{2}$ and $y_{2}=x_{1}-x_{2}$
(b) The joint p.d.f of x and y is given by.

$$
\mathrm{F}(\mathrm{x} \mathrm{y})=\left\{\begin{array}{cc}
8 x y & 0<y<x<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find
(i) $\mathrm{f}(\mathrm{x})$
[2 marks]
(ii) $\mathrm{f}(\mathrm{y}) / \mathrm{x})$
[2 marks]
(iii) $E(y / x)$
[3 marks]
(iv) $\operatorname{Var}(\mathrm{y} / \mathrm{x})$
[3 marks]

QUESTION FIVE (20 MARKS)

Let x_{1} and x_{2} be two independent R.V.S having a poisson distribution with parameters λ_{1} and λ_{2}. Find the probability distribution function of $\mathrm{Y}=x_{1}+x_{2}$.

