MATH 242

UNIVERSITY

CHUKA

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE, ART, EDUCATION

MATH 242: PROBABILITY AND STATISTICS II

STREAMS: BSC, BED & BA

TIME: 2 HOURS

DAY/DATE: TUESDAY 10/08/2021

11.30 A.M – 1.30 P.M.

INSTRUCTIONS

• Answer Question **ALL** the THREE Questions.

QUESTION ONE [30 MARKS]

a) Let x and y be random variables with a joint density function.

$$f(x, y) = \begin{cases} 4xy, 0 \le x, y \le 1\\ 0, elsewhere \end{cases}$$

 Find
 [8 marks]

 (i) Cov(x, y) [8 marks]

 (ii) $P(y/x=\frac{1}{2})$ [4 marks]

b) Suppose that X and Y be two continuous random variables with joint density function

$$f(x,y) = f(x) = \begin{cases} \frac{k}{2} x^3 y^3, & 0 \le x \le 2, 0 \le y \le 2\\ 0, & Otherwise \end{cases}$$

i.Find the value of k[3 marks]ii.Determine whether variables X and Y are independent[4marks]iii.Find= $P\left(X \le \frac{1}{2} \therefore Y > \frac{1}{2}\right)$ [3marks]

iv. Find Var (X+2Y)

c) Let X and Y have the joint density function

$$f(x,y) = \begin{cases} 4xy, & 0 \le x \le k, 0 \le y \le 1\\ 0, & Otherwise \end{cases}$$

[3marks]

Find

- i. Show that the value of k is 1 [2 marks]
- ii. The conditional P D F of Y given X = x [3 marks]

QUESTION TWO (20 MARKS)

a) The joint probability density function of X and Y is represented by the table below;

Y	1	2	3	4
X				
1	0.05	0.75	0.065	0.093
2	0.059	0.1	0.12	0.102
3	0.05	0.001	0.082	0.003
4	0.1	0.07	0.01	0.02

Find	(i) the	marginal probabi	ility distri	butions of X and Y	[3 marks]
	(ii) the	conditional prob	ability of	X given Y=3	[3 marks]
	(iii) E(X	K/Y=3) and Var(X/Y=3)		[6 marks]

b) Given the joint p.d.f of X and Y is

$$f(x,y) = \begin{cases} x\left(x + \frac{1}{3}y\right), 0 \le x \le 1, 0 \le y \le 2\\ 0, \quad elsewhere \end{cases}$$

Find (a)	(i) $E(X)$ (ii) $E(Y)$ (iii) $E(XY)$	[6 marks]
(b)	Are X and Y independent?	[2 marks]

QUESTION THREE (20 MARKS)

a) The joint p.d.f of X and Y is $f(x, y) = \begin{cases} 2e^{-x-y}, & 0 < x < y, 0 < y < \infty \\ 0, & elsewhere \end{cases}$

Find

(i) the joint moment generating function of X and Y.	[8 marks]
(ii) $E(X)$	[4 marks]

b) Consider a sample of size two draw without replacement from an urn containing three balls numbered 1,2 and 3. Let X be the smaller of the two numbers drawn and Y the larger of the two numbers drawn.

Find

- i. the joint probability distribution function of X and Y
- ii. the conditional distribution of Y given X=1
- iii. Cov(X,Y) [8 marks]
