MATH 241

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE, BCHELOR OF EDUCATION AND BACHELOR OF ARTS

MATH 241 : PROBABILITY AND STATISTICS 1

STREAMS: BSC, BED & BA

DAY/DATE: MONDAY 01/11/2021

INSTRUCTION:

• Answer ALL the Questions.

Question One (30 marks)

- a) Distinguish between the following probability mass function and a probability density function (2 marks)
- b) A discrete random variable has the following p.m.f.

X	3	4	5	6	7	
Pv(X = x)	0.1	a	0.3	b	0.2	

If E(x) = 5.2.

Find the

i) values of 'a' and 'b'

ii) The
$$Var(x)$$

- iii) Cdf of the random variable (2 marks)
- c) A random variable has the exponential distribution

$$f(x) = \begin{cases} \lambda e^{-\lambda x}; & x > 0\\ 0 & otherwise \end{cases}$$

i) Show that the moment generating function is

$$M_x(t) = \left(1 - \frac{t}{\lambda}\right)^{-1}$$
 (4 marks)

CHUKA

CHUKA UNIVERSITY

TIME: 2 HOURS

11.30 A.M. - 1.30 P.M.

(4 marks)

(3 marks)

		IVIATE 241	
	ii)	Hence find the mean and variance of x.	(7 marks)
d)	If $f(x$	$F(x) = b(x; n, p), E(x) = 4, var(x) = 3.$ Compute $Pr(x \ge 1)$	(3 marks)
e)	A rar	dom variable x is normally distributed with $\mu = 20$ and a	$\sigma^2 = 16.$ If

$$Y = \frac{1}{4}(x - 20)$$

Find

- i) E(Y)
- ii) Var (Y)
- iii) Hence or otherwise write down the p.d.f. of Y. (5 marks)

Question Two (20 marks)

a) Let Y be a continuous random variable. Show that the function

$$f(y) = \begin{cases} \frac{y}{2} & 0 \le y \le 2\\ 0 & otherwise \end{cases}$$

Is indeed a probability density function.

Hence determine

- i) $\Pr(-1 \le y \le 1)$ (3 marks)
 - ii) E(y) (3 marks)
- iii) The cumulative distribution function F(y)

(3 marks)

(2 marks)

b) Give f(x) is a Poisson distribution function of r.v x, show that it's moment generating function is given by $m_x(t) = e^{\lambda(e^t - 1)}$. Hence or otherwise determine the mean of x.

(9 marks)

Question Three (20 marks)

- a) The annual number of earthquakes registering at least 2.5 on the Richter Scale and having an epicenter within 40 miles of downtown Memphis follows a Poisson distribution with mean 6.5. What is the probability that at least 9 such earthquakes will strike next year? (5 marks)
- b) Let X be a Bernoulli random variable with probability mass function given by;

$$\begin{cases} \text{MATH 241} \\ p^{x}(1-p)^{1-x}, x = 0, 1 \\ 0 , otherwise \end{cases}$$

Find;

i)	The factorial moment generating	(5 marks)
ii)	The probability generating function	(5 marks)
iii)	The mean and variance	(5 marks)