CHUKA

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL

EXAMINATION FOR THE AWARD OF BACHELOR OF EDUCATION ARTS

MATH 223: MECHANICS

STREAMS: BED (ARTS)
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 03/02/2021
11.30 A.M. - 1.30 P.M.

INSTRUCTIONS: All questions are compulsory.
Take $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$

Question One (30 marks)

a) A partial moving in straight line with a constant acceleration travels 10 m in the first second and 15 m in the second second. Determine the distance travelled in the third second
b) A stone is thrown with an initial velocity of $300 \mathrm{~m} / \mathrm{s}$ at an angle of 60° to the horizontal. Find the maximum height that it attains.
(3mks)
c) Show that a force of magnitude 36 N acting at the vertices of the square ABCD below form a couple and determine the magnitude of the couple if the length of the square is 20 cm .

MATH 223

d) A smooth wire is bent to form a circular ring of radius r meter. The ring is held in a vertical plane and a small bend of mass 10 g is threaded on the wire. The bend is given a small displacement from the lowest position and is then released. If at any instant the radius to the bend is inclined at an angle θ to the vertical, show that $\ddot{\theta}=\frac{-g}{\gamma} \theta$
e) A particle of mass 0.2 kg is moving on a course 032° at $25 \mathrm{~m} / \mathrm{s}$. It's acted upon by a force of 15 N for 0.45 s , so that the subsequent direction of its motion is $098{ }^{0}$. Find the direction of the force and the final speed of the particle.
f) A block of wood is placed on a horizontal plank. The plank is titled so that the angle of inclination increases to 25°. At this angle, the block begins to slide down the plank. Determine the coefficient of friction.
g) An object of mass 4 kg moves round a circle of radius 6 m with a constant speed of $12 \mathrm{~m} / \mathrm{s}$. Calculate the force towards the centre.

Question Two (20 marks)

a) A simple pendulum of length L suspended from a fixed point is allowed to oscillate about the vertical. When the string is inclined at an angle θ to the vertical line, the speed of the bob is $v \mathrm{~ms}^{-1}$. Neglecting air resistance, show that the bob performs simple harmonic motion.
b) A uniform ladder of mass 30 kg and length 4 m stands on a rough horizontal ground and leans against a smooth vertical wall. The foot of the ladder is 1.2 m out from the wall. Determine:
i. The normal contact force of the wall on the ladder.
ii. The normal contact force of the ground on the ladder.
iii. The frictional force of the ground on the ladder.
c) A particle P is projected vertically upwards from a point A with an initial velocity of $40 \mathrm{~m} / \mathrm{s}$. One second later, another particle Q is projected from the point A with the same vertical velocity. Calculate:
i. The time the particles takes to collide after the projection of Q . (4 mks)
ii. The height from point A of the point of collision

Question Three (20 marks)

a) The fig. 1 below shows two bodies A and B of masses 3 kg and 5 kg respectively placed on the rough sloping face of a double inclined place. The angles of the sloping sides are 30° and 60°. The coefficient of friction is $1 / 3$ between A and the left-hand face and $3 / 5$ between B and the right-hand face

Calculate

i. The acceleration of the system
ii. The tension in the string when the bodies are released from rest.
b) A particle of mass m undergoes an acceleration a when a force F, acts on it such that within a time t, it is displaced through s. given V_{o} and V are its initial and final velocity, show that:
i. $\quad F=m a$
ii. $\quad v_{o}=v-a t$
iii. $\quad v_{o}=\frac{2 s-a t^{2}}{2 t}$
$v_{o}=\sqrt{v^{2}-2 a s}$

