CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF EDUCATION
 SCIENCE /ARTS; BSc. MATHEMATICS; ECONOMICS AND STATISTICS; BACHELORS OF ARTS(MATHS-ECONS)

MATH 222: VECTOR ANALYSIS

STREAMS: "as above"

TIME: 2HRS

DAY/DATE:

INSTRUCTIONS:

- Answer question ONE and TWO other questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: (30 MARKS)

a) Prove that if \vec{a} and \vec{b} are non-collinear vectors and $x_{1} \vec{a}+y_{1} \vec{b}=x_{2} \vec{a}+y_{2} \vec{b}$, then $x_{1}=x_{2}$

$$
\text { and } y_{1}=y_{2}
$$

(2marks)
b) Find the directional derivative of $\phi=x^{2} y+x z$ in the direction of the vector $2 i-2 j+k$ at $(1,-2,2)$
(4marks)
c) The position vector of a particle in space is given by the equation $\vec{s}=2 \cos 2 t \hat{\imath}+2 \sin 2 t \hat{\jmath}+3 t \hat{k}$
(i) Find the equations of the velocity and acceleration at any time t
(2 marks)
(ii) Find the initial speed of the particle
(1 mark)
d) Find the work done in moving a particle once around a circle C in the $\mathrm{x}-\mathrm{y}$ plane if the circle has centre at the origin and radius 3 units and the force field is given by
$\vec{F}=(2 x-y+z) \hat{i}+\left(x+y-z^{3}\right) \hat{j}+(x-6 y+z) \hat{k}$
e) Determine the unit tangent vector at the point where $t=2$ on the curve $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$
f) Find the volume of the region to the intersecting cylinders $x^{2}+y^{2}=16$ and $z^{2}+y^{2}=16$
(5 marks)
g) Find an equation for the plane determined by the points $\mathrm{P} 1(2,-1,1), \mathrm{P} 2(-3,-2,1)$ and $\mathrm{P} 3(,-1,3,2)$
h) Given that $\emptyset=45 x^{2} y$, evaluate its volume integral such that the volume space is bounded by planes $4 x+2 y+z=8, x=0, y=0, z=0$.
(5 marks)

QUESTION TWO: (20 MARKS)

a) Given that $\mathrm{A}=3 \mathrm{i}+\mathrm{j}+2 \mathrm{k}$ and $\mathrm{B}=\mathrm{i}-2 \mathrm{j}-4 \mathrm{k}$ are the position vectors of points P and Q respectively. Find an equation for the plane passing through Q and perpendicular to line PQ .
(5 marks
b) Prove that $\operatorname{div}(\operatorname{curl}(\overrightarrow{A)})=0$
c) Given the space curve $r(t)=\langle t, 3 \sin t, 3 \cos t\rangle$, find:
i. The tangent vector \hat{T}
ii. The principal normal \hat{N} and curvature κ
iii. The unit binormal \hat{B}
d) show that $\nabla^{2}\left(\frac{1}{r}\right)=0$

QUESTION THREE: (20 MARKS)

a) Given the vector function $\vec{F}=\left(y^{2} \cos x+z^{3}\right) i+(2 y \sin x-4) j+\left(3 x z^{2}+2\right) k$
i. Show that a conservative force field
ii. Find the scalar potential
iii. Evaluate $\int_{c} \vec{F} \cdot \overrightarrow{d r}$ where c is a straight line from $(0,-1,1)$ to $\left(\frac{\pi}{2},-1,2\right)$ (2 marks)
b) State and Verify divergence theorem for $\vec{A}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ taken over the region bounded by the cylinder $x^{2}+y^{2}=4,0 \leq z \leq 3$ (13 marks)

QUESTION FOUR: (20 MARKS)

a) Evaluate the line integral $\int_{c} y^{3} d x-x^{3} d y$ where C is the positively oriented circle of radius 2 centered at the origin (10 marks)
b) Use Stoke's theorem to evaluate $\iint_{S} \operatorname{curl} \vec{F} \overrightarrow{d s}$ where $\vec{F}=z^{2} i-3 x y j+x^{3} y^{3} k$ and S is the part of the surface $z=5-x^{2}-y^{2}$ above the plane $z=1$. Assume S is oriented upwards

QUESTION FIVE: (20 MARKS)

a) Find the volume of the parallelepiped with adjacent sides

$$
\begin{equation*}
\vec{u}=2 \hat{\imath}+\hat{\jmath}+3 \hat{\mathrm{k}}, \vec{v}=-\hat{\imath}+3 \hat{\jmath}+2 \hat{\mathrm{k}}, \vec{w}=\hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}} \tag{4marks}
\end{equation*}
$$

b) If $\vec{A}=x^{2} y z \hat{\imath}-2 x z^{3} \hat{\jmath}+x z^{2} \widehat{\mathrm{k}}$ and $\vec{B}=2 z \hat{\mathrm{\imath}}+y \hat{\jmath}-x^{2} \hat{\mathrm{k}}$, find $\left.\frac{\partial^{2}}{\partial_{x} \partial_{y}} \overrightarrow{(A X} \vec{B}\right)$ at $(1,0,-2)$
(4 marks)
c) Verify Green's theorem for $\int_{c} x^{3} d x+2 x(1+x y) d y$, where C is the unit circle

