CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE,ARTS), BACHELOR OF SCIENCE, BACHELOR OF MATHEMATICS, BACHELOR OF ARTS (MATHS-ECON), BACHELOR OF SCIENCE (ECON STATS)

MATH 222: VECTOR ANALYSIS

STREAMS: "As above"
TIME: 2 HOURS
DAY/DATE: TUESDAY 23/03/2021
11.30 A.M - 1.30 P.M

INSTRUCTIONS:

Answer question ONE and TWO other questions

- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE: ($\mathbf{3 0}$ MARKS)

(a) Prove that if \vec{a} and \vec{b} are non-collinear vectors and $x_{1} \vec{a}+y_{1} \vec{b}=x_{2} \vec{a}+y_{2} \vec{b}$, then $x_{1}=x_{2}$ and $y_{1}=y_{2} \quad$ (3 marks)
(b) The position vector of a particle in space is given by the equation $\vec{s}=2 \cos 2 t \hat{\imath}+2 \sin 2 t \hat{\jmath}+$ $3 t \hat{k}$
(i) Find the equations of the velocity and acceleration at any time t
(ii) Find the initial speed of the particle
(c) Find the directional derivative of $\varnothing=x^{2} y+x z$ in the direction of the vectors $2 \hat{\imath}-2 \hat{\jmath}+\hat{k}$ at $(1,-2,2)$
(d) Show that $\nabla^{2}\left(\frac{1}{r}\right)=0$
(e) Find the work done in moving a particle once around a circle C in the $\mathrm{x}-\mathrm{y}$ plane if the circle has centre at the origin and radius 3 units and the force field is given by
$\vec{F}=(2 x-y+z) \hat{i}+\left(x+y-z^{3}\right) \hat{j}+(x-6 y+z) \hat{k}$
(4 marks)
(f) Find an equation for the plane determined by the points P1(2,-1,1), P2(-3,-2,1) and P3(-1,3,2)
(4 marks)
(g) Given that $\emptyset=45 x^{2} y$, evaluate its volume integral such that the volume space is bounded by planes $4 x+2 y+z=8, x=0, y=0, z=0$.
(5 marks)
(h) If $\vec{A}=\left(2 x^{2} y-x^{4}\right) \hat{\imath}+\left(e^{x y}-y \sin x\right) \hat{\jmath}+\left(x^{2} \cos y\right) \hat{k}$, find $\frac{\delta^{2} A}{\delta x \delta y}$
(2 marks)

QUESTION TWO: (20 MARKS)

(a) Given that $\vec{A}=3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $\vec{B}=\hat{\imath}-2 \hat{\jmath}-4 \hat{k}$ are position vectors of points P and Q respectively. Find an equation for the plane passing through Q and perpendicular to the line PQ.
(b) Given the space curve defined by $\vec{r}(t)=\langle t, 3 \sin t, 3 \cos t\rangle$, Find
(i) The tangent vector $\overrightarrow{\mathrm{T}}$
(ii) The principal normal $\overrightarrow{\mathrm{N}}$ and curvature κ
(iii) The Binormal \vec{B}
(c) Prove that $\operatorname{div}(\operatorname{Curl}(\vec{A}))=0$

QUESTION THREE: (20 MARKS)

(a) Given the vector function $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \hat{i}+(2 y \sin x-4) \hat{j}+\left(3 x z^{2}+2\right) \hat{k}$
(a) Show that \vec{F} is a conservative force field
(ii) Find the scalar potential
(iii) Evaluate $\int_{C} \vec{F} \cdot \overrightarrow{d r}$, where c is a straight line from $(0,1,-1)$ to $\left(\frac{\pi}{2},-1,2\right)$
(b) State and Verify divergence theorem for $\vec{A}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ taken over the region bounded by the cylinder $x^{2}+y^{2}=4,0 \leq z \leq 3$

QUESTION FOUR: (20 MARKS)

(a) Evaluate the line integral $\int_{C} y^{3} d x-x^{3} d y$ where C is the positively oriented circle of radius 2 centered at the origin.
(10 marks)
(b) Use Stoke's theorem to evaluate $\iint_{S} \operatorname{curl} \vec{F} \overrightarrow{d s}$, where $\vec{F}=z^{2} \vec{i}-3 x y \vec{j}+x^{3} y^{3} \vec{k} \quad$ and S is the part of surface $z=5-x^{2}-y^{2}$ above the plane $z=1$. Assume that S is oriented upwards.

(10
marks)

QUESTION FIVE: (20 MARKS)

(a) Find the volume of the parallelepiped with adjacent sides
$\vec{u}=2 \hat{\imath}+\hat{\jmath}+3 \hat{\mathbf{k}}, \vec{v}=-\hat{\imath}+3 \hat{\jmath}+2 \hat{\mathbf{k}}, \vec{w}=\hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}}$
(b) If $\vec{A}=x^{2} y z \hat{\imath}-2 x z^{3} \hat{\jmath}+x z^{2} \hat{k}$ and $\vec{B}=2 z \hat{\imath}+y \hat{\jmath}-x^{2} \hat{\mathrm{k}}$, find $\left.\frac{\partial^{2}}{\partial_{x} \partial_{y}} \overrightarrow{(A X} X \vec{B}\right)$ at $(1,0,-2)$ (5 marks)
(c) Verify the Green's Theorem for $\int_{C} x^{3} d x+2 x(1+x y) d y$, where C is the unit circle.

