CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

MATH 221: CALCULUS II

STREAMS:
TIME: 2 HOURS
DAY/DATE: TUESDAY 30/03/2021
11.30 A.M - 1.30 P.M

INSTRUCTIONS:

Answer question one and any other two questions

QUESTION ONE (COMPULSORY) (30 MARKS)
(a) Find the integral of the following functions
(i) $\int x^{2} \csc ^{2} x^{3} \operatorname{Cot}^{4} x^{3} d x$ [3 marks]
(ii) $\quad d / d x\left(\int_{x}^{2 x}\left(\frac{d t}{1+t^{2}}\right)\right.$ [3 marks]
(iii) $\int \frac{d x}{x^{2}+2 x+5}$
[3 marks]
(iv) $\int \frac{x}{\sqrt{x^{2}+2 x-3}} d x$
[3 marks]
(b) Assuming that in a certain city the temperature $\left(\operatorname{In}^{\circ} E\right)$ t hours after 9AM is represerited by the function
$\mathrm{T}(\mathrm{t})=50+14 \sin \frac{\pi t}{12}$
Find the average temperature in the city during the period from 9AM to 9 P.M. [3 marks]
(c) By taking $\mathrm{n}=4$, find the approximate value of
$\int_{0}^{2} \sqrt{4+x^{2}} \mathrm{dx}$

Using the trapezoidal rule.
(d) Find the length of the curve
$\mathrm{y}=\frac{4}{3} \sqrt{2} x^{\frac{3}{2}}=1$ from $\mathrm{x}=0$ to $\mathrm{x}=1$
(e) Find the Maclourin series of sine function.
(f) Evaluate $\int_{1}^{4} \int_{-1}^{2}\left(2 x+6 x^{2} y\right) d y d x$
(g) Find the area of the region bounded by the graphs of $y+x^{2}=6$ and $y+2 x-3=0$

QUESTION TWO (20 MARKS)

(a) Approximate
$\int_{1}^{2}\left(\frac{1}{x}\right) d x$ by using Simpson's rule with $\mathrm{n}=10$. Estimate the error in the approximation.
(b) Evaluate $\int \frac{d x}{x\left(x^{2}+x=1\right)}$
(c) Find the integral of $\sin ^{n} d x$
(d) Evaluate the following definite integral of the $f(x)$ such that
(i) $\mathrm{f}(\mathrm{x})=\int_{-3 / 4}^{3 / 4} \frac{d x}{\sqrt{9-4 x^{2}}}$
(ii) $\int_{0}^{2} \int_{x^{2}}^{2 x}\left(x^{3}+4 y\right) d y d x$

QUESTION THREE (20 MARKS)

(a) Evaluate $\int \frac{\left(1-9 x^{2}\right)^{\frac{3}{2}}}{x^{4}} d x$ [6 marks]
(b) Evaluate $\int \tan ^{3} x d x$ [4 marks]
(c) Evaluate $\int \frac{3 x^{4}+x^{3}+20 x^{2}+3 x+31}{(x+1)\left(x^{2}+4\right)^{2}}$ [4 marks]
(d) Prove that if f and g are continuous on $[a, b]$ and g is non negative than there is a number c in (a, b) for which

$$
\int_{a}^{b} f(x) d x=f(x) \int_{a}^{b} g(x) d x
$$

QUESTION FOUR (20 MARKS)

(a) Find $\int \sqrt{1-e^{x}} d x$
(b) Use trapezoidal rule to estimate the value of $\int_{0}^{1} x \sin x d x$

Taking $n=10$. Find the error term associated with such approximation.
(c) If $\mathrm{f}(\mathrm{x})=x^{2}+1$ find the volume of the solid generated by revolving the region under the graph of f from -1 to 1 about x - axis.
[3 marks]
(d) Integrate $\int x^{2} e^{2 x} d x$
(e) Use reduction formula to evaluate

$$
\begin{equation*}
\int \sin ^{4} x d x \tag{4marks}
\end{equation*}
$$

QUESTION FIVE (20 MARKS)

(a) Find the area bounded by the graphs of $y-x=6$ and $y-x^{3}=0$ and $2 y+x=0$.
[3 marks]
(b) Evaluate the following integral
(i) $\int \frac{3 x^{2}+2 x+3}{\left(x^{2}+1\right)^{2}}$
(ii) $\int \sin ^{4} \cos ^{2} x d x$
(iii) $\int e^{x} \cos 2 x d x$
[5 marks]
(c) Find the distance travelled between $\mathrm{t}=0$ and $\mathrm{t}=\frac{\pi}{2}$ by a particle whose position at time t is given by $\mathrm{x}=\sin ^{2} t, \mathrm{y}=\sin ^{2} t$ [3 marks]

