CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF

BACHELOR OF SCIENCE DEGREE IN MATHEMATICS

MATH 405: ALGEBRA II

STREAMS: "AS ABOVE"

TIME: 2 HOURS

11.30 AM – 1.30 PM

DAY/DATE: WEDNESDAY 31/3/2021

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** Questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (30 MARKS)

- a) Verify whether or not the following are ideals in the given ring
 - i. R is the ring of rational numbers and I is the set off non negative rational numbers
 - ii. R is Z[x] and I is the set of polynomials in Z[x] whose leading coefficient is even
 - iii. R is Z_6 and I is the set of elements in Z_6 of the form $r + Z_6$ where r is an even number

(6 marks)

b) The addition and part of the multiplication table for the ring R={a,b,c} are given below. Use the distributive laws to complete the multiplication table below

+	a	b	с
а	a	b	с
b	b	с	а
c	c	a	b

*	a	b	с
a	a	а	а
b	a	с	
С	a		

(5 marks)

MATH 405

- c) Working in Q[x], find the highest common factor of $x^3 + x^2 8x 12$ and $x^3 + 5x^2 + 8x + 4$ and express it as a linear combination of the two functions (5 marks)
- d)) If R is a commutative ring with identity, show that R[x] is also a commutative ring with identity (5 marks)
- e) Let R be the ring of all 2X2 matrices over Z with the usual addition and multiplication of matrices.
 - i. Show that the subset of R consisting of all matrices of the form

$$T = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | a, b, c \in Z \right\}$$
 is a non-commutative subring with unity.

iii. Find if
$$I = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} | a, b \in Z \right\}$$
 is an ideal of T (6 marks)

QUESTION TWO (20 MARKS)

a) Consider the set $R = \{[0], [2], [4], [6], [8], [10], [12], [14], [16]\} \subseteq Z_{18}$.

	i.	Construct addition and multiplication tables for R using operations as def	fined in Z_{18}
			(2 marks)
	ii.	Show that R is a commutative ring with unity.	(2 mars)
i	ii.	Show that R a subring of Z_{18}	(2 marks)
i	v.	Does R have zero divisors?	(1 marks)
	v.	Is R a field? If yes illustrate each element with its inverse	(1 mark)
b)	Let	P be an ideal in R. P is a prime ideal if and only if $\frac{R}{P}$ is an integral doma	in. (6 marks)
c)	Let	M be an ideal in R. M is a maximal ideal iff $\frac{R}{M}$ is a _field.	(6 marks)

QUESTION THREE (20 MARKS)

- a) Let F be a field, and let f(x) and g(x) be polynomials in F[x] where F is a field
 - i. Prove that deg(fg) = deg(f) + deg(g). (4 marks)

Consider the polynomials $f(x) = 2x^2 + 3x + 3$ and g(x) = 3x + 1 in the polynomial ring $Z_6[x]$ s. Find:

i. deg(f)

ii. deg(g)

- iii. deg(fg)
- iv. why is the theorem above not satisfied

(4marks)

- b) Let X be a non-empty set and R be the setoff all subsets of X. Define addition and multiplication in R as follows
 - $A + B = A \cup B A \cap B$ $A * B = A \cap B$ For all $A \in R$ define a function $f : R \to Z_2$ as $f(x) = \begin{cases} \overline{lifx} \in A \\ \overline{0}otherwise \end{cases}$ i. Show that $A + \phi = A$ and $A + A = \phi$ (5 marks)
 - ii. Show that f is a homomorphism of rings (7marks)

QUESTION FOUR (20 MARKS)

a) Let U be a fixed non-empty set and R be the set of subsets of U with addition and multiplication defined by $A + B = A \cup B$ and $A \times B = A \cap B$. Verify whether or not $(R, +, \times)$ is a ring.

			(6 marks)
b)	Let F	be a field, and f(x) anon-zero polynomial in F[x]. Prove the following	
	i.	If $g(x) \in F[x]$ is an associate of $f(x)$, then $deg(g) = deg(f)$.	(4 marks)
	ii.	There exists a unique monic polynomial that is an associate of $f(x)$.	(4 marks)
c)	Let I a	and J be ideals in the ring Z of integers, Verify whether or not	
	i.	$I \cup J$ is an ideal	
	ii.	$I \cap J$ is an ideal	(6 marks)

QUESTION FIVE (20 MARKS)

a)	i. Use the Euclidean Algorithm to find $hcf(x^3 + 2x^2 - x - 2, x^2 - 4x + 3)$ in Q[x].	(4 marks)
	ii. Hence, or otherwise, find polynomials s,t in Q[x] for which	
	$x - 1 = s(x^{3} + 2x^{2} - x - 2) + t(x^{2} - 4x + 3)$	(4 marks)
	iii. find $lcm(x^3 + 2x^2 - x - 2, x^2 - x - 2)$	(4 marks)
b)	prove that in a ring of integers, every ideal is a principal ideal	(8 marks)

.....