MATH 420/421

UNIVERSITY

CHUKA

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE/ARTS)

MATH 420/421: PARTIAL DIFFERENTIAL EQUATIONS 1

STREAMS: BSC

TIME: 2 HOURS

2.30 P.M - 4.30 P.M.

DAY/DATE: WEDNESDAY 03/11/2021

INSTRUCTIONS:

• Answer Questions <u>ONE</u> (compulsory) and any other <u>TWO</u> Questions.

QUESTION ONE (COMPULSORY) (30 MARKS)

a. Define a Pfaffian e	equation in:	
i.	2 dimension	(2marks)
ii.	3dimension	(3Marks)
b. Find the differential equation arising from $z = ax + by + cxy$		(6marks)
c. Solve the Lagrang	ge's equation $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$	(7marks)
d. Eliminate the arbitrary constant from $z = (x - a)^2 + (y - b)^2$		(6marks)

e. Solve
$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial u}{\partial x}$$
 (6marks)

MATH 420/421

QUESTION TWO (20 MARKS)

- a. Find the orthogonal trajectories on the surface $x^2 + y^2 + 2gx + c = 0$ where g is a parameter and c is a constant (10 marks)
- b. Eliminate the arbitrary constants *a* and *b* from the equation $ax^2 + by^2 + ab = z$

c. Find the integral curves of the equation
$$\frac{dx}{y(x+y)+cz} = \frac{dy}{x(x+y)-cz} = \frac{dz}{z(x+y)}$$
(6 marks)

(4 marks)

QUESTION THREE (20 MARKS)

a. Solve the Type II Partial differential equation (8Marks) b. Verify that the differential equation $(y^2 + yz)dx + (xz + z^2)dy + (y^2 - xy)dz = 0$ is integrable (5Marks) c. Solve the Pfaffian equation z dx + dy + dz = 0 (7Marks)

QUESTION FOUR (20 MARKS)

a. Find the partial differential equation arising from z=(x + a)(y + b) (8marks)
b. Solve the nonlinear partial differential equation given by z = px + qy + 3p^{1/3}q^{1/3}/₁ for (12Marks)

QUESTION FIVE (20 MARKS)

a. Verify that u = f(x - ct) + g(x + ct) is a solution to $c^2 U_{xx} = U_{tt}$ (8marks) b. Find the integral curves of the equation $\frac{dx}{x + y - z} = \frac{dy}{x + y - z} = \frac{dz}{2(z - y)}$ taking 1, -3, -1 as multipliers (12marks)
