CHUKA

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF SCIENCE IN MATHEMATICS AND BACHELOR OF EDUCATION (SCIENCE)

MATH 427: PARTIAL DIFFERENTIAL EQUATIONS II

STREAMS: BSC. MATHS \& B. ED SCI.
TIME: 2 HOURS
DAY/DATE: MONDAY 27/09/2021
8.30 A.M. - 10.30 A.M.

INSTRUCTIONS:

- Answer question one and any other two questions
- Adhere to the instructions on the answer booklet.

QUESTION ONE Compulsory

a. Given the Partial differential equation $\left(U_{x z}\right)^{3}+U_{x y z}=U_{x}$ State the order, linearity and degree of the Pde giving reasons
b. Evaluate $U_{x y}=e^{y} \cos x$ given that $U(0, y)=-e^{y} \sin x$ by direct integration
c. Given the PDE, $(3+y) U_{x x}+2(3-x) U_{x y}+(3+y) U_{y y}=U_{x}+U_{y}$, determine the values of (x) and (y) for which the equation is
i. Hyperbolic.
ii. Parabolic
d. Solve the pde $U_{x x}-4 U_{x y}+U_{y y}=0$ by the D operator
e. Apply the method of separation of variables to solve $U_{x}=2 U_{t}+U$, given that

$$
\begin{equation*}
U(x, 0)=6 e^{-3 x} \tag{5marks}
\end{equation*}
$$

f. Given the partial differential equation $U_{x x}+4 U_{x y}+5 U_{y y}=0$
i. Classify the pde
ii. Find the characteristics
iii. Obtain $U_{x x}$ and $U_{y x}$ in terms of the characteristics

QUESTION TWO

a. Classify the following PDE's
(i). $U_{t t}=4 U_{x x}$
(2 marks)
(ii). $2 U_{t}=3 U_{x x}$
(2 marks)
(iii). $U_{x x}-4 U_{x y}+U_{y y}=0$
b. Solve the equation $U_{t}=U_{x x}$ with boundary conditions given that $0<x<l$

7marks

$$
\begin{aligned}
& U(0, t)=0 \\
& U(l, t)=0 \\
& U(x, 0)=3 \sin n \pi x
\end{aligned}
$$

c. Solve the pde $U_{x x}-U_{x y}=\sin x \cos 2 y$ by the D operator

QUESTION THREE

a. Given that the homogeneous PDE $A(x, y) U_{x x}+2 B(x, y) U_{x y}+C(x, y) U_{y y}=0$, find it's characteristic curve λ, and show that $\lambda=\frac{-B}{C}$ if it is parabolic (4 marks)
b. Classify the following differential equation in the second quadrant of the xy plane.

$$
\begin{equation*}
\left(\sqrt{y^{2}+x^{2}}\right) U_{x x}+4(x-y) U_{x y}+\left(\sqrt{y^{2}+x^{2}}\right) U_{y y}=0 \tag{4marks}
\end{equation*}
$$

c. Solve the pde $U_{x x}-2 U_{x y}+U_{y y}=\sin x$ by the D operator
d. Evaluate $U_{x y}=x^{2} y$ given that $U(x, 0)=x^{2}$ and $U(1, y)=\cos y$ by direct integration (6 marks)

QUESTION FOUR

a. Solve the pde $U_{x x}+U_{x y}-6 U_{y y}=y \cos x$ by the D operator (6 marks)
b. Solve the non-homogeneous pde $U_{x x}+U_{x}-U_{y y}+3 U_{y}-2 U=x^{2} y$ (7 marks)
c. Solve the pde $U_{x x}+U_{y y}=x^{2} y^{2}$ by the D operator

QUESTION FIVE

a. Apply the method of separation of variables to solve $U_{x}=2 U_{t}+U$, given that

$$
U(x, 0)=0 \text { and } U_{t}(0, t)=0
$$

b. The vibrations of an elastic string is governed by the equation $U_{x x}=U_{t t}$. Find the deflection $U(x, t)$ of the vibrating string for $t>0$, under the following conditions.
(10 marks)
$U(0, t)=0$
$U(\pi, t)=0$
$U_{t}(x, 0)=0$
$U(x, 0)=2(\sin x+\sin 3 x)$

