MATH 442

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN ARTS AND EDUCATION

MATH 442: TIME SERIES ANALYSIS

STREAMS: BSC, B.ED, BA	TIME:	2
HOURS		
DAY/DATE: THURSDAY 23/09/2021	8.30 A.M – 10.30 A	A.M.

INSTRUCTIONS:

• Answer question ONE and any other TWO questions.

QUESTION ONE (30 MARKS)

- (a) Outline four (4) uses of time series analysis in statistics. (4 marks)
- (b) Consider the AR process and show that $X_t = 0.8X_{t-1} 0.15X_{t-2} + e_t$ (8 marks)
- (c) Given the following observation of a time series for n = 10

	t	1	2	3	4	5	6	7	8	9	10
-	X _t	0.812	1.657	2.537	3.431	4.329	5.254	6.174	7.104	8.044	8.956

Find

- (i) Sample auto-covariance r(1) and r(2) (4 marks)
- (ii) Sample auto-correlation p(1) and p(2) (4 marks)

Consider MA (2) process given by

$$X_t = e_t - 0.1e_{t-1} + 0.21e_{t-2}$$

(i)	Show that the model is stationery	(4 marks)
(ii)	Show that the model is invertible	(2 marks)
(iii)	Find the ACF for this process	(4 marks)

QUESTION TWO (20 MARKS)

(i) Find the Yule Walker equation of the AR (3) process

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \phi_3 X_{t-3} + e_t$$
 (10 marks)

(ii) Consider a set of independent and identically distributed random variable $\{e_t\}$ such that $E(e_t) = 0$ and variance of e_t is σ_e^2 . Let the process be given by $X_t = \emptyset e_{t-1} + e_t$ where \emptyset Is a constant. Show that X_t is weakly stationary. (10 marks)

QUESTION THREE (20 MARKS)

- (i) Outline four (4) components of a time series data. (8 marks)
- (ii) Fit a local polynomial of degree 2 with 5 consecutive data points given the weight.

$$W = \frac{1}{35}(-3,12,17,12,-3)$$
(12 marks)

QUESTION FOUR (20 MARKS)

(i) Determine whether the process

$$X_t = 0.6X_{t-1} - 0.5X_{t-2} + e_t - 0.4e_{t-1} + 0.2e_{t-2}$$

Is stationary and invertible

(ii) Find the covariance generating function of the MA (2) process given by

$$X_t = e_t + \frac{3}{10}e_{t-1} - \frac{1}{4}e_{t-2}$$
 (6 marks)

Hence the autocorrelation function.

QUESTION FIVE

Find the spectral density function of the process (20)

$$X_t + X_{t-1} + X_{t-2} = e_t$$

(20 marks)

(6 marks)