CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL EXAMINATION

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE, BACHELOR OF EDUCATION AND BACHELOR OF ARTS

MATH 445/447: APPLIED MULTIVARIATE ANALYSIS

STREAMS: BSC, BED, BA
TIME: 2 HOURS

DAY/DATE: TUESDAY 10/08/2021
2.30 P.M - 4.30 P.M.

INSTRUCTIONS

- ANSWER ALL THE QUESTIONS

QUESTION ONE

a. Let $\bar{X} \sim N(\underline{\mu}, \Sigma)$ with $\underline{\mu}=\left[\begin{array}{lll}50 & 24 & 10\end{array}\right]$ and $\Sigma=\left[\begin{array}{ccc}64 & 16 & -8 \\ 16 & 16 & 2 \\ -8 & 2 & 4\end{array}\right]$
i. Determine the joint distribution of

$$
\begin{aligned}
& Y_{1}=X_{1}+X_{2}-X_{3} \\
& Y_{2}=X_{1}-2 X_{2}
\end{aligned}
$$

ii. Are $\quad Y_{1}$ and Y_{2} independent? Give reason
[3 marks]
iii. Determine the standard deviation matrix $V^{\frac{1}{2}}$ and the correlation matrix[5 marks]
b. Let $X \sim N(\mu, \Sigma)$ be tri-variate normal random vector with $\mu=[804010]$ and

$$
\Sigma=\left[\begin{array}{ccc}
36 & -12 & -6 \\
-12 & 16 & 2 \\
-6 & 2 & 4
\end{array}\right]
$$

Find
i. The regression function of X_{1} on X_{2} and X_{3}
[8 marks]
ii. Conditional variance of X_{1} when effect of X_{2} and X_{3} have been eliminated [8 marks]

QUESTION TWO

Observations on three responses are collected for two treatments. The observation vectors are as given below.

Treatment	A	A	B	B	B	B
X_{1}	4	6	10	4	10	8
X $_{2}$	2	2	3	3	0	2
X $_{3}$	0	2	6	3	4	3

Find
i. The matrix of sum of squares due to treatment [5 marks]
ii. The matrix of residual sum of squares [5 marks]
iii. the Wilk's lambda statistics and use it to test the hypothesis that there is no treatment effect at 5\% significance level
[6 marks]
iv. State all the assumptions of MANOVA

QUESTION THREE

The perspiration of 20 healthy female University students was analyzed by Physician in charge of Chuka University Sanatotium. Three components X1=Sweet rate, X2=Sodium Content and X3=Potassium Content, were measured and the results were summarized as follows:
$\underline{\bar{x}}=\left[\begin{array}{l}4.64 \\ 45.4 \\ 9.97\end{array}\right] \quad S^{-1}=\left[\begin{array}{ccc}0.566 & -0.022 & 0.258 \\ -0.022 & 0.006 & -0.002 \\ 0.258 & -0.002 & 0.402\end{array}\right] \quad S=\left[\begin{array}{ccc}2.879 & 10.002 & -1.810 \\ 10.002 & 199.798 & -5.627 \\ -1.810 & -5.627 & 3.628\end{array}\right]$
Test the hypothesis $H_{0}: \underline{\mu}=\left[\begin{array}{c}4 \\ 50 \\ 10\end{array}\right]$ versus $H_{1}: \underline{\mu} \neq\left[\begin{array}{c}4 \\ 50 \\ 10\end{array}\right]$ at 5% significance level. [20 marks]

